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Abstract
Biodiversity conservation faces a methodological conundrum: Biodiversity measure-
ment often relies on species, most of which are rare at various scales, especially prone 
to extinction under global change, but also the most challenging to sample and model. 
Predicting the distribution change of rare species using conventional species distribu-
tion models is challenging because rare species are hardly captured by most survey 
systems. When enough data are available, predictions are usually spatially biased to-
wards locations where the species is most likely to occur, violating the assumptions of 
many modelling frameworks. Workflows to predict and eventually map rare species 
distributions imply important trade-offs between data quantity, quality, representa-
tiveness and model complexity that need to be considered prior to survey and analy-
sis. Our opinion is that study designs need to carefully integrate the different steps, 
from species sampling to modelling, in accordance with the different types of rarity 
and available data in order to improve our capacity for sound assessment and predic-
tion of rare species distribution. In this article, we summarize and comment on how 
different categories of species rarity lead to different types of occurrence and distri-
bution data depending on choices made during the survey process, namely the spatial 
distribution of samples (where to sample) and the sampling protocol in each selected 
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1  |  INTRODUC TION

Almost all international, national and local conservation planning 
activities flag biodiversity as a crucial environmental property (e.g. 
Aichi Targets, Sustainable Development Goals) (Butchart et al., 2016; 
Griggs et al., 2013) to be protected from the deleterious effects of 
habitat loss, exploitation, pollution and climate change (IPBES, 2019; 
Maxwell et al., 2016; Rands et al., 2010). However, biodiversity mea-
surement often relies on species, most of which are rare at various 
scales (Enquist et al., 2019; Fontaine et al., 2007; Hartley & Kunin, 
2003; Henle et al., 2010; Rabinowitz, 1981; Steege et al., 2013). 
Several initiatives to halt biodiversity loss have questioned whether 
current measures of biodiversity do actually sufficiently account 
for rare species (e.g. Fontaine et al., 2007). For example, one-third 
of plant species worldwide are too poorly known and have too few 
data for a Red List assessment (Brummitt et al., 2015; Enquist et al., 
2019). At the same time, rare species are especially prone to extinc-
tion (Courchamp et al., 2006; Henle et al., 2004; Işik, 2011; Kunin & 
Gaston, 1993; McKinney, 1997). One way to assess extinction risk 
is to track the change in spatial distribution through time (Araújo 
et al., 2002; Benito et al., 2009; Gärdenfors et al., 2001; Thomas 
et al., 2004). Therefore, protecting species diversity directly implies 
protecting rare species, which requires understanding their distri-
bution patterns.

Unfortunately, rarity causes considerable methodological diffi-
culties in obtaining sufficient data from survey programmes or alter-
native sources (e.g. Roberts et al., 2016), which limits the ability of 
models to predict distribution patterns. For example, many studies 
using species distribution models (SDMs, defined in Box 1) need a 
minimum number of occurrences below which the models cannot be 
reliably trained and/or validated (e.g. van Proosdij et al., 2016). Thus, 
we are locked in the “rare-species modelling paradox” (Lomba et al., 
2010): the majority of species that require the greatest protection 
also are the species we know least about and are most difficult to 
model.

However, rarity is an umbrella term used to describe various 
types of distribution patterns at various scales. Rabinowitz (1981) 
defined seven categories of rarity based on combinations of the 

range of a species, the distribution of populations within its range 
and the local density of the species when present (Figure 1a). 
Whatever measure used (e.g. range size, occupancy, abundance, rel-
ative cover, biomass), and ecosystem or scale of the study, a com-
munity is likely to include a handful of common species and a long 
tail of rare species (Fisher et al., 1943; Preston, 1948). The result-
ing pattern of species-abundance distributions, following a log-like 
curve in most natural systems (but also see (Magurran & Henderson, 
2003)), is observed on local to global scales, with correspondingly 
fine abundance (McGill et al., 2007) to range size frequency (Gaston, 
1998) data.

With the goal of mapping rare species’ distribution ranges and 
changes for protection purposes, each of the seven types of rarity 
implies different problems in accumulating data for modelling. For 
example, two species A and B with similar prevalence are both found 
within an area: Species A has a narrow range with high local density 
(rarity category 2) and species B has a broad range with low local 
density (rarity category 4). Randomly distributed sampling in this 
area is likely to sample only a few sites where species A is present 
and many sites where species B is present; consequently, species B’s 
distribution is likely to be better evaluated than species A’s distribu-
tion. However, a priori knowledge on where species A is present may 
mean that species A is more often encountered than species B; con-
sequently, the dataset contains more presences of species A than of 
species B. The type of rarity, the spatial distribution of samples and 
the protocol used to sample each location thus all affect the data 
generated, and the types of the model used to project the species’ 
distribution range. Finally, with the perpetual changes in taxonomy 
(taxonomic revisions), the identification, assessment and conserva-
tion of rare species are constantly challenged (Ota, 2000; Schwartz 
& Simberloff, 2001; Standley, 1992) (but see also (Domínguez Lozano 
et al., 2007; Simkins et al., 2020)) and the expected increase in spe-
cies number for some taxonomic groups (Morrison III et al., 2009) 
foresees an endless need to coping with rarity issues.

We, therefore, face a conundrum in which, although rarity is 
ubiquitous, it is particularly challenging to account for, sample and 
model, at all scales. Whilst some publications already provide a com-
prehensive overview on specific aspects of the different steps from 

location (how to sample). We then clarify which species distribution models are suit-
able depending on the different types of distribution data (how to model). Among oth-
ers, for most rarity forms, we highlight the insights from systematic species-targeted 
sampling coupled with hierarchical models that allow correcting for overdispersion 
and spatial and sampling sources of bias. Our article provides scientists and practi-
tioners with a much-needed guide through the ever-increasing diversity of methodo-
logical developments to improve the prediction of rare species distribution depending 
on rarity type and available data.

K E Y W O R D S
bias, detectability, distribution change, methods, occupancy, rare species, sampling, spatial 
data, species distribution modelling, survey
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sampling to modelling rare species (Cunningham & Lindenmayer, 
2005; Green & Young, 1993; Hermoso et al., 2015; Kenkel et al., 1990; 
Milner-Gulland & Rowcliffe, 2007; Robinson et al., 2018; Thompson, 
2013b), how to improve our prediction of rare species distribution 
changes remains a complete challenge to date (Aubry et al., 2017; 
Didham et al., 2020; Galante et al., 2018; Helmstetter et al., 2021). 
Our perspective is that all steps need to be integrated in the study 
design. In particular, their sequence needs to be adapted to the dif-
ferent types of rarity to improve our capacity for sound assessments 
and predictions of the distribution of the majority of biodiversity. 
However, the trade-offs faced when modelling the distribution of 
rare species and the decision path linking the form of the rarity with 
the sampling and modelling strategies have largely been neglected. 
Therefore, to help untangle the rarity conundrum and adapt model-
ling strategies to the rarity issues, we aim, for each of Rabinowitz's 
categories of rarity:

(i)	  To identify the main trade-offs involved in selecting adequate, 
cost-effective sampling strategies and how these affect the 
properties of the data.

(ii)	 To identify modelling frameworks that are potentially suitable 
for the type of data generated and to highlight gaps that require 
model development.

To address the first aim, we focus on the spatial distribution of 
samples (‘where to sample’) and on the protocols used to do the sam-
pling (‘how to sample’). For the second aim, we list and discuss the 
main modelling frameworks suitable for producing distribution maps 
for different types of rarity (‘how to model’). We synthesize our find-
ings, provide guidelines to optimize and integrate monitoring and 
modelling of rare species depending on their rarity characteristics 
and briefly discuss remaining challenges with respect to sampling 
and modelling rare species.

BOX 1 Glossary (of the terms underlined in the main text)

∙	 Hierarchical Models (HM): or multi-level models. Statistical models of parameters that vary at more than one level of data organi-
zation (e.g. nested data, such as abundances of a given species located in different habitat types themselves located in different 
ecoregions) and thus allow accounting for the potential interdependence between the data points (for further details, see, e.g. 
(Gelman & Hill, 2007; Raudenbush & Bryk, 2002)).

∙	 Mark-release-recapture (MRR): Mark-release-recapture, or capture-mark-recapture, is a sampling technique that consists in captur-
ing, marking and releasing individuals of a species in a first capture session. In one or more follow-up capture sessions, the ratio 
of marked to unmarked specimens is taken to estimate population size (see, e.g. (Southwood & Henderson, 2009; Williams et al., 
2002)).

∙	 Occupancy: Occupancy can refer to two different notions (MacKenzie et al., 2017); (1) the probability of a site to be occupied by a 
given species, i.e. the a priori expectation that a particular site will be occupied by the species as determined by some underlying 
process (or occurrence probability), (2) the proportion of area or sites occupied, which results from the realization of the former 
process.

∙	 Patchiness: The way habitat patches (and populations) are distributed through space. Habitat patches can be clumped (i.e. spa-
tially aggregated in patches concentrated in a few places, potentially most at risk under environmental stochasticity), patchy (i.e. 
spatially aggregated according to irregular patterns, e.g. one, two, or five patches per group of patches), random and regular (i.e. 
uniformly distributed apart from each other).

∙	 Spatially representative sample-set: Sample-set collected at a set of locations that are spatially distributed in a statistically un-
constrained manner, e.g. by a stratified design, in which areas are stratified according to their environmental conditions and the 
number of samples in each stratum is proportional to the area of that stratum. Such sampling is spatially representative of the 
variability of these conditions over the whole study area and does not over-represent unusual but rare environmental conditions.

∙	 Species Distribution Model (SDM): Here, used as a generic catch-all term to refer to any empirical model that allows spatially-
explicit prediction of the current or future environmental suitability for a species (using presence-only, presence/absence and/or 
abundance data) based on predictors (such as climate, land-use, etc.) and, possibly, scenarios (e.g. IPCC’s climate change scenarios) 
(Guisan & Thuiller, 2005). Depending on the objectives and underlying assumptions—but mostly using the same types of data and 
algorithms, these models are also called ecological niche models (ENMs), habitat suitability models (HSMs), niche-based mod-
els (NBMs), potential habitat distribution models (PHDMs) and when used only with climate variables, climate-envelope models 
(CEMs) or climate matching models (CMMs) (Guisan et al., 2013). For instance, ENM can give more focus to species niche quanti-
fication or requirements whilst strict SDMs focus more on getting spatial predictions of species distribution (Saupe et al., 2012). 
In the context of rare species modelling, models aim to predict either the probability/likelihood of occurrence or the probability of 
environmental suitability for the species, with the caution that these predictions may differ from the realized distribution because 
a location may be suitable but not reachable by the species.
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2  |  WHERE TO SAMPLE

When setting up a survey program there are multiple ways by which 
the spatial allocation of samples can be decided (Table 1; Figure 1b). 
Any choice made at this stage will affect the properties of the col-
lected data. The main trade-off to consider is between sampling ef-
ficiency and spatial coverage.

Locally focused sampling targeting a particular species allows 
its population to be studied efficiently, but at the expense of a spa-
tially non-representative sample of the species distribution. This 
conflicts with the aim of covering the realised niche of a species, an 
assumption of most modelling frameworks. For species whose distri-
bution range is relatively wide and distribution pattern is dispersed 
(common species and rarity category 4), a spatially representative 
sample-set of the entire extent is more likely to provide the required 
occurrence data. Spatially representative sampling has several pos-
itive properties. First, data are comparable among species, allowing 
cost-effective monitoring of multiple species. Second, even if the lo-
cation of samples is not constant, data remain comparable between 
years, allowing the detection of temporal changes in distribution (if 
sampling intensity is kept constant). Third, data on the focal species 
fit easily into most modelling frameworks, if enough are collected. 
This is usually done with a systematic sampling scheme on a grid, 
stratifying the sampling according to habitat or land cover (whilst 
ensuring proportional sampling in each stratum), or by randomly se-
lecting the sampling locations (Table 1; Figure 1b).

However, for species with narrow and/or clumped and patchy 
distribution patterns (rarity categories 1, 2, 3, 5, 6, 7), a random 
sample-set of the entire extent is unlikely to capture sufficient in-
formation. For example, in the 2007 UK plants countryside survey, 
591 one-km2 locations were included in a stratified random design 
(Bunce et al., 2014; Carey et al., 2008): the survey recorded 880 spe-
cies. As there are approximately 4000 plant species in the UK, the 
survey failed to detect 2400 rare species. In fact, the narrower and 
clumpier the distribution of a species, the larger the number of ran-
dom sites needed to encounter the species in enough locations to 
make credible estimates of abundance or distributional status and 
changes. Thus, one may need to constrain the sampling towards the 
target species.

Various methods allow the distribution of samples to target loca-
tions more likely to contain a certain rare species (Table 1; Figure 1b). 
One such example is adaptive sampling (Thompson, 2013b; Yoccoz 
et al., 2001). Many programs periodically monitor rare species 

sample locations where the species is known to occur, but rarely 
look in new sites. Such adaptive sampling may be excellent in keep-
ing track of known populations, but eventually leads to erroneous 
conclusions regarding distribution trends. Consider a species sub-
ject to metapopulation dynamics, experiencing local extinctions and 
colonization of patches: if sampling is in known locations only, one 
may identify all local extinctions (and a preceding gradual decrease 
in population size) but not identify the colonization of new patches. 
Thus, we might wrongly conclude that the species distribution is de-
teriorating whilst it may in fact be in an equilibrium state (Magurran 
et al., 2010) (but see (McRae et al., 2017)).

Another fruitful approach is to combine adaptive with SDM-
guided sampling (Aizpurua et al., 2015; Chiffard et al., 2020; e.g. 
Lin et al., 2014) where one sampling session provides information 
to model and the following sessions allow adjusting the distribution 
of samples (Thompson, 2013a,b; Yoccoz et al., 2001). For example, 
a SDM with data sampled at a certain time can tag potentially un-
known local populations for sampling the next year (e.g. Lin et al., 
2014). Once the area is sampled and SDM parameters updated, the 
SDM is re-run and new locations targeted. Such a strategy may be 
very efficient at accumulating observations of rare species. However, 
it comes with the risk of estimating an over-optimistic occupancy 
trend, as the number of detected presences can increase over time 
whilst the distribution actually decreases (Table 1). Appropriately 
parametrized stacked SDMs, including rarity weighting, can further 
allow improving the sampling of multiple rare species and help pri-
oritize sampling areas (Rosner-Katz et al., 2020). Any form of adap-
tive sampling, therefore, needs considerable manipulation and/or 
reliable complementary information for further species distribution 
modelling (Dorazio, 2014; Hefley et al., 2014; Phillips et al., 2009; 
Raes & ter Steege, 2007).

The transition from spatially representative sampling to species-
targeted sampling also reflects a gradient of a priori knowledge 
(Table 1). Random sampling does not require specific knowledge. 
Adaptive sampling and SDM-guided approaches instead need con-
siderable knowledge of the species and its requirements before de-
signing the sampling scheme. Stratified schemes require knowledge 
about sampling sites and their habitats or environmental conditions 
across the full range of the target species. Additionally, stratified 
schemes depend on the quality of the original information used to 
guide the stratification that has its own uncertainty, due to potential 
spatial errors and classification issues (Rocchini et al., 2011).

To summarize, different strategies for defining the spatial dis-
tribution of samples reflect the compromise between sampling 

F I G U R E  1  Synthesis infographic of (a) the Rabinowitz's seven categories of rarity, (b) examples of approaches to assess where to sample 
depending on the rarity category, (c) examples of approaches to assess how to sample depending on the rarity category and species local 
density and (d) examples of modelling approaches to predict and map species distribution depending on the type of data generated in 
previous steps (a) and (b). Note that most of the methods can be used in more than one situation, but for the simplicity of the figure, we did 
not systematically repeat them and rather highlighted the methods we considered as the most useful or relevant. The references (numbers 
in brackets) are listed below the figure. Breiner et al. (2015), Lomba (2010), Chen and Pollino (2012), Fithian et al. (2015), Marcer et al. (2013), 
Keil et al. (2013), Rocchini et al. (2017), El-Gabbas and Dormann (2018), Radosavljevic and Anderson (2014), Boria et al. (2014), MacKenzie 
et al. (2017), Royle and Nichols (2003), Kéry and Royle (2015), Willson et al. (2011), Nichols et al. (2008), Giraud et al. (2016), Bowler et al. 
(2019), Joseph et al. (2009), Cunningham and Lindenmayer (2005), Chandler et al. (2011)
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efficiency and spatial representativeness (Figure 1b). Overall, 
three main types of data may be generated, each with implications 
for modelling: data can be spatially representative (of the species 
range, potentially for multiple species), spatially constrained inde-
pendent of the species, or spatially constrained towards particular 
species.

3  |  HOW TO SAMPLE

For assessing the distribution of species and changes therein, sam-
pling should aim to collect the appropriate quantity of presence 
data, reduce the number of false absences, and account for the de-
tectability of the sampled species (Table 2; Figure 1c). Locally rare as 
well as elusive (e.g. cryptic or trap-shy) species (Thompson, 2013b) 
both pose specific challenges. The probability of detecting a species 
depends on a range of factors, such as habitat type, time of the day 
and year, population density and methods employed to survey the 
species. Repeated sampling with methods targeting rare and elusive 
species reduce the probability of false absences and the latter may 
generate presence/absence data accounting for detection probabil-
ity (MacKenzie et al., 2017).

Multiple methods increase the detectability of species; some 
are just a function of sampling effort (e.g. longer transects), others 
are more directly related to the known ecology of the target spe-
cies (Table 2; Figure 1c). These latter methods include, for example, 
baited traps (e.g. Steyer et al., 2013), camera traps (e.g. Schüttler 
et al., 2017), species-specific markers in environmental DNA (eDNA) 
sampling (e.g. Carraro et al., 2018), expert knowledge of the spe-
cies’ habitat preference and/or behaviour or the use of detection 
dogs (Grimm-Seyfarth & Klenke, 2019; Grimm-Seyfarth et al., 2019; 
Hollerbach et al., 2018).

There are several points to consider. First, most of these methods 
increase the effort or costs required compared with simpler meth-
ods, especially when the sampling aims to detect several rare spe-
cies simultaneously. Second, methods increase detection probability 
differently for different species, producing output less comparable 
between species unless methods are highly standardized. For exam-
ple, a trap baited with pheromones of a specific species will attract 
more individuals of the focal species than baiting a trap with food 
utilized by many species (e.g. dung for dung beetles) (Marsh et al., 
2013). However, recent advances in genetic monitoring, such as im-
proved markers in eDNA detection of stream species (Carraro et al., 
2021; e.g. Jerde et al., 2011; Leese et al., 2021), significantly increase 
the number of species detected, including many rare species, espe-
cially from rivers over several kilometres in length (Altermatt et al., 
2020; e.g. Mächler et al., 2019)—but these methods still need fur-
ther calibration works (Alsos et al., 2018; e.g. Beng & Corlett, 2020; 
Cristescu & Hebert, 2018). Third, highly standardized protocols are 
essential for comparisons among sites, although some variability in 
detectability between sites will remain; for example, bird songs are 
less audible in leaved deciduous forests than in mixed pine forests 
(Pacifici et al., 2008).

Some sampling methods generate presence/absence and even 
abundance data in sufficient quality and quantity to account for 
detection probability (with repeated sampling of selected sites 
during a specific period (Mackenzie & Royle, 2005)). Among oth-
ers, such methods include distance sampling (Buckland et al., 2015) 
and capture-mark-recapture (Williams et al., 2002). For the latter, 
capture by camera traps coupled with image analysis is particularly 
promising for rare species (Schüttler et al., 2017; Table 2; Figure 1c). 
Although these data greatly increase the spectrum of models that 
can be applied, they require high effort and cost; hardly suitable 
for rare species except perhaps for those with high local density. 
However, combining such methods with occupancy surveys or op-
portunistic observations (e.g. atlas or citizen-science data) and the 
incorporation of environmental data as potential predictors of oc-
cupancy and/or abundance may allow the extrapolation of rare spe-
cies distributions across large spatial scales (e.g. Bowler et al., 2019; 
Giraud et al., 2016).

4  |  HOW TO MODEL

As discussed above, choices on the spatial distribution of samples 
eventually lead to three types of datasets: spatially representa-
tive, spatially constrained independent of the species (e.g. due to 
unrepresentative sampling of environments (see e.g. Bystriakova 
et al., 2012; Varela et al., 2014)), or spatially constrained towards 
target species. From a modelling perspective, this results in a trade-
off between the number of presences and the need to account for 
spatial auto-correlation in the data. Similarly, sampling protocols af-
fect the type of data obtained for modelling, be it presence-only, 
presence/absence, or presence/absence with detectability or es-
timates of abundances, and thus condition the type and quality of 
inference. Depending on the type of rarity, the ‘where to sample’ 
and ‘how to sample’ decisions, successful modelling of rare species 
require modelling tools that fall into all combinations of the cases 
above (Figure 1d).

When only presences are available, some methods produce 
pseudo-absences based on external information (e.g. habitat suitabil-
ity (Barbet-Massin et al., 2012)). For some models, such as Maxent 
and Poisson point-process models (PPPMs), pseudo-absences are 
better interpreted as background points, not implying absences but 
rather samples of the available environment, where presences are 
compared against unsampled background locations (Merow et al., 
2013; Phillips et al., 2009). They do not produce the probability of 
occurrence but relative occurrence rates (Guillera-Arroita et al., 
2015) and can be appropriate for rare species modelling if proper 
bias correction is applied (Table 3; Figure 1d).

Where presence/absence data are available, developments 
in SDMs allow handling of data over-dispersion (e.g. negative-
binomial and mixed effect models (Harrison, 2014; Molenberghs 
et al., 2007; O’Hara & Kotze, 2014)), spatial-autocorrelation (e.g. 
Dormann et al., 2007; Marcer et al., 2013), uncertainty in pre-
dictions (e.g. ensemble forecasting (Araújo & New, 2007; Guisan 
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TA B L E  3  Non-exhaustive list of methods to assess how to model rare species data, with their brief description, advantages and limits, 
the type of rarity for which they appear as most appropriate, and examples of references related (listed in the references section). 
Inputs/outputs can be P (presences only), lik (presence likelihood), PA (Presences/Absences), ab (abundance), det (detectability information), 
pocc (probability of occurrence). Underlined words refer to the Glossary (Box 1)

Method Brief description Pros Cons
Suitable for which rarity 
categories? Examples/references

Input data
→Output calculated/
estimate

Data processing Data processing Different processing strategies can be applied to data 
prior to actual modelling which allows making data 
more appropriate, more powerful, or more in line 
with the assumptions of subsequent modelling; 
e.g. combine opportunistic observations with 
atlas data, correct biases in presence-only data, 
data transformations (e.g. abundances into rank 
abundance curves)

Data-saving, allows using the 
maximum of information available

Often requires to take arbitrary decisions to select 
thresholds, correcting factors, etc

All Fithian et al. (2015);
Phillips (2009) (correct biases in 

presence-only data);
Nekola et al. (2008) (data 

transformations)

PA→PA
ab→ab

Modelling methods 
commonly 
grouped under 
“SDMs”

Regular SDMs with 
absence data

SDMs with no particular correction effect nor 
sophistication when enough data are available and 
meet all modelling assumptions (rarely the case), 
e.g. GLM

Simple Requires absence data
Often too simplistic, resulting in strongly biased results
Can suffer overfitting if the number of predictors is 

too high compared to too few species occurrences
Assumes that habitat suitability is the most limiting 

driver of species distribution
Doesn't control for sampling biases or variable 

detectability

Common species Guisan and Zimmermann (2000) PA→relative pocc

SDMs + pseudo-
absences

SDMs where no absence data is unavailable. Models 
either attempt to generate absences where they 
believe the species to be absent (pseudo-absences) 
or sample environmental conditions available to the 
species (background points)

Simple
Only requires readily-available 

presence data

Requires data and prior knowledge on habitat 
suitability

Assumes that habitat suitability is the most limiting 
driver of species distribution

Common species Barbet-Massin et al. (2012) P (+background 
data)→relative lik

Bias-corrected 
SDMs

(Hierarchical) SDMs accounting for different, 
potential sources of biases due to spatial location, 
autocorrelation, observation effects, etc. Examples 
of models are mixed effect models with an 
observer random effect, models accounting for 
spatial auto-correlation, SDMs with model-based 
bias correction, zero-inflated models that allow 
modelling true and false absences separately

Accurate
Particularly appropriate and flexible 

for rare species modelling
Hypothesis-driven

Interpretation sometimes difficult
Hypothesis-driven
Requires information on observational conditions

All Dormann et al. (2007), Marcer 
et al. (2013) (models 
accounting for spatial 
auto-correlation);

Fithian et al. (2015) (mixed 
effect models with an 
observer random effect);

El-Gabbas and Dormann (2018) 
(SDMs with model-based 
bias correction);

Zuur et al. (2009) (zero-inflated 
models)

P→relative lik
PA→relative pocc
ab + det→relative ab

Multi-scale SDMs Models incorporating distribution information at 
multiple grain sizes

—Information from distribution data at multiple grain 
sizes constrain fine-grain predictions

—Information on environmental conditions at multiple 
grain sizes used as inputs

Processes that operate at multiple 
spatial scales, and ones unrelated to 
environmental relationships, can be 
incorporated in to model predictions

Complicated fitting frameworks Common species Keil et al. (2013) (hierarchical 
models incorporating 
distribution information at 
multiple grain sizes);

Rocchini et al. (2017)

PA→ relative pocc
P→relative lik

Geographically-
structured 
SDMs

SDM procedure that:
(1) splits evaluation data based on spatial clustering of 

the data;
(2) using modelling data (e.g. creation of pseudo-

absence/background data), incorporates spatial bias 
of presence data or taxonomic group

Can use most traditional SDM 
algorithms (only affects input data)
Reduces the risk of overfitting data 
to spatial biases in sampling data

Assumes that habitat suitability is the most limiting 
driver of species distribution

Can cause nearly all data to be assigned to 1–2 folds, 
and other folds being constructed with v. few 
occurrence points

Common species Radosavljevic and Anderson 
(2014);

Phillips et al. (2009)

PA→relative pocc
P→relative lik

Spatial-thinning 
SDMs

SDM procedure that consists in removing spatially 
clustered occurrence points to reduce the spatial 
autocorrelation in input data

Can use most traditional SDM 
algorithms (only affects input data)
Reduces the spatial autocorrelation 
in input data
Reduces the risk of overfitting data to 
spatial biases in sampling data

Assumes that habitat suitability is the most limiting 
driver of species distribution

Reduces the quantity of modelling data

Common species Boria et al. (2014) PA→relative pocc
P→relative lik
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TA B L E  3  Non-exhaustive list of methods to assess how to model rare species data, with their brief description, advantages and limits, 
the type of rarity for which they appear as most appropriate, and examples of references related (listed in the references section). 
Inputs/outputs can be P (presences only), lik (presence likelihood), PA (Presences/Absences), ab (abundance), det (detectability information), 
pocc (probability of occurrence). Underlined words refer to the Glossary (Box 1)

Method Brief description Pros Cons
Suitable for which rarity 
categories? Examples/references

Input data
→Output calculated/
estimate

Data processing Data processing Different processing strategies can be applied to data 
prior to actual modelling which allows making data 
more appropriate, more powerful, or more in line 
with the assumptions of subsequent modelling; 
e.g. combine opportunistic observations with 
atlas data, correct biases in presence-only data, 
data transformations (e.g. abundances into rank 
abundance curves)

Data-saving, allows using the 
maximum of information available

Often requires to take arbitrary decisions to select 
thresholds, correcting factors, etc

All Fithian et al. (2015);
Phillips (2009) (correct biases in 

presence-only data);
Nekola et al. (2008) (data 

transformations)

PA→PA
ab→ab

Modelling methods 
commonly 
grouped under 
“SDMs”

Regular SDMs with 
absence data

SDMs with no particular correction effect nor 
sophistication when enough data are available and 
meet all modelling assumptions (rarely the case), 
e.g. GLM

Simple Requires absence data
Often too simplistic, resulting in strongly biased results
Can suffer overfitting if the number of predictors is 

too high compared to too few species occurrences
Assumes that habitat suitability is the most limiting 

driver of species distribution
Doesn't control for sampling biases or variable 

detectability

Common species Guisan and Zimmermann (2000) PA→relative pocc

SDMs + pseudo-
absences

SDMs where no absence data is unavailable. Models 
either attempt to generate absences where they 
believe the species to be absent (pseudo-absences) 
or sample environmental conditions available to the 
species (background points)

Simple
Only requires readily-available 

presence data

Requires data and prior knowledge on habitat 
suitability

Assumes that habitat suitability is the most limiting 
driver of species distribution

Common species Barbet-Massin et al. (2012) P (+background 
data)→relative lik

Bias-corrected 
SDMs

(Hierarchical) SDMs accounting for different, 
potential sources of biases due to spatial location, 
autocorrelation, observation effects, etc. Examples 
of models are mixed effect models with an 
observer random effect, models accounting for 
spatial auto-correlation, SDMs with model-based 
bias correction, zero-inflated models that allow 
modelling true and false absences separately

Accurate
Particularly appropriate and flexible 

for rare species modelling
Hypothesis-driven

Interpretation sometimes difficult
Hypothesis-driven
Requires information on observational conditions

All Dormann et al. (2007), Marcer 
et al. (2013) (models 
accounting for spatial 
auto-correlation);

Fithian et al. (2015) (mixed 
effect models with an 
observer random effect);

El-Gabbas and Dormann (2018) 
(SDMs with model-based 
bias correction);

Zuur et al. (2009) (zero-inflated 
models)

P→relative lik
PA→relative pocc
ab + det→relative ab

Multi-scale SDMs Models incorporating distribution information at 
multiple grain sizes

—Information from distribution data at multiple grain 
sizes constrain fine-grain predictions

—Information on environmental conditions at multiple 
grain sizes used as inputs

Processes that operate at multiple 
spatial scales, and ones unrelated to 
environmental relationships, can be 
incorporated in to model predictions

Complicated fitting frameworks Common species Keil et al. (2013) (hierarchical 
models incorporating 
distribution information at 
multiple grain sizes);

Rocchini et al. (2017)

PA→ relative pocc
P→relative lik

Geographically-
structured 
SDMs

SDM procedure that:
(1) splits evaluation data based on spatial clustering of 

the data;
(2) using modelling data (e.g. creation of pseudo-

absence/background data), incorporates spatial bias 
of presence data or taxonomic group

Can use most traditional SDM 
algorithms (only affects input data)
Reduces the risk of overfitting data 
to spatial biases in sampling data

Assumes that habitat suitability is the most limiting 
driver of species distribution

Can cause nearly all data to be assigned to 1–2 folds, 
and other folds being constructed with v. few 
occurrence points

Common species Radosavljevic and Anderson 
(2014);

Phillips et al. (2009)

PA→relative pocc
P→relative lik

Spatial-thinning 
SDMs

SDM procedure that consists in removing spatially 
clustered occurrence points to reduce the spatial 
autocorrelation in input data

Can use most traditional SDM 
algorithms (only affects input data)
Reduces the spatial autocorrelation 
in input data
Reduces the risk of overfitting data to 
spatial biases in sampling data

Assumes that habitat suitability is the most limiting 
driver of species distribution

Reduces the quantity of modelling data

Common species Boria et al. (2014) PA→relative pocc
P→relative lik

(Continued)
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Method Brief description Pros Cons
Suitable for which rarity 
categories? Examples/references

Input data
→Output calculated/
estimate

Ensemble of 
multiple SDMs

Ensemble SDMs The procedure that takes outputs from several 
algorithms of SDMs, weights these outputs based 
on respective model performances (using e.g. AIC) 
and generates single ‘consensus’ predictions by 
model averaging methods

Does not rely on the single best model
Ensemble predictions perform better 

compared to single modelling techniques
Can use variance between models as an 

estimate of uncertainty

All the cons of SDM approaches above
Model averaging also has limitations (e.g. sensitivity to 

performance score and thresholds used)
Predictive performance still questioned

Common species Araújo and New (2007);
Hao et al. (2019, 2020)

PA→relative pocc
P→relative lik

Ensemble of Small 
Models (ESM)

Strategy that consists in modelling the distribution 
of rare species based on fitting a larger number 
of small (bivariate, trivariate, etc.) models, that is 
models with only two predictors at a time (although 
only one or three could also be used), and averaging 
them in an ensemble prediction using weights based 
on model performances (e.g. based on AUC score)

Circumvents the risk of overfitting when 
applying an SDM on too few occurrences 
data

Excellent performance on species data 
with a low number of occurrences

Allows structuring the modelling framework 
according to different scales of drivers 
of species distribution (e.g. local vs. 
climatic predictors)

Requires to choose thresholds of performance 
scores to decide which models are included in the 
ensemble

Remains unclear how this method performs for the 
different forms of rarity, especially the spatially-
biased ones, as it is mainly based on the number of 
occurrences and related IUCN status

ESM performance (compared to both single-model 
Regular SDM and standard Ensemble SDMs) 
depends on the number of species occurrences 
available in the data

Cat4, Cat6 (low density but 
spatially dispersed)

Lomba (2010);
Breiner et al. (2015)

P→relative lik

Bayesian Belief 
Network SDMs

Bayesian Belief 
Network SDMs

(a.k.a. Bayesian networks, causal probability networks, 
acyclic directed graphs) Statistical tool derived from 
graph theory and Bayesian inference that predicts 
the probability of ecological responses to varying 
input assumptions such as habitat and population 
demography conditions and hypothesized causal 
relationships

All the pros related to Bayesian statistical 
frameworks: flexibility, accounting and 
quantification of uncertainties, integration 
of prior knowledge information on the 
rare species of interest, easily updatable 
with new data/information, etc.

Integration, assessment and visualization 
of causal pathways to explain species 
distribution

Due to its visual nature and relative ease 
of use, highly suitable for participatory 
modelling

Requires to discretize input predictors with choices of 
thresholds which can lead to class edge effects (but 
see Aguilera et al., 2010)

More appropriate for risk or conservation category 
assessment than for predicting or mapping species 
distribution

Assumptions and reasoning behind the hypothesized 
influence diagram must be clearly documented/
justified as the latter strongly influences 
predictions

Potentially all (provided 
that enough prior 
knowledge and 
validation data are 
available)

Marcot et al. (2006a,b);
Smith et al. (2007);
Aguilera et al. (2010);
Chen and Pollino (2012);
MacCracken et al. (2012);
Hamilton et al. (2015);
Van Echelpoel et al. (2015)

P→relative lik
PA→relative pocc
ab→relative ab

Occupancy 
downscaling 
modelling

Occupancy 
downscaling 
modelling

Models that describe the OAR are fitted at large grain 
sizes to atlas data and then extrapolated to predict 
occupancy at fine grain sizes

Occupancy-Area Relationship (OAR) (or scale-area 
curve or range-area relationship) (Harte & Kinzig, 
1997; Kunin, 1998) is the relationship between the 
area occupied by a species and the sampling grain 
size. This relationship is positive and its shape is 
characteristic of the species distribution pattern 
(extent, patchiness, prevalence)

By aggregating data at large scales, 
overcomes sampling gaps (false absences 
in atlas data) and effects of sampling biases

No need for covariates

Needs some atlas data
Only determines occupancy in terms of proportion of 

sites or area occupied, i.e. not spatial-explicit
May be subject to some errors/uncertainty from the 

models
Requires to think carefully about how to fit the 

upscaling functions
may not be possible to fit models for some species—-

e.g. very rare, dispersed species, or very common 
widespread species—as the OAR reaches the scale 
of endemism or saturation

Cat1, Cat2, Cat4, Cat5, 
Cat6

Azaele et al. (2012);
Barwell et al. (2014);
Marsh et al. (2019)

PA (atlas 
data)→occupancy 
(as the proportion 
of sites or area 
occupied)

Modelling methods 
commonly 
grouped under 
“site-occupancy 
models”

Mark-release-
recapture 
modelling 
(robust design)

HM using mark-recapture histories to estimate 
population parameters (colonization, extinction, 
etc.), occurrence probability and detectability. 
Requires to fulfil the population closure assumption 
between the temporal replicates and to have 
relatively good temporal replication (robust design). 
Can use covariates to estimate detectability and 
other potential biases.

Provides accurate estimations of population 
parameters (e.g. population size, survivorship, 
fecundity)

Provides accurate estimations of detectability 
(e.g. trap happiness/shyness effects, 
time-varying capture, sex-dependent 
detectability)

Thanks to the robust design principle, if one 
has multiple visits that are separated by 
sufficiently short periods of time, one can 
consider each visit as fulfilling the 
assumption of population closure

Hypothesis-driven
Computationally intensive

All, especially for Cat4, 
Cat5, Cat6, Cat7 (low 
local density) but for 
low local density, it may 
be challenging to get 
enough data for reliable 
estimates

Pollock et al. (1990);
MacKenzie et al. (2002);
MacKenzie (2006);
Willson et al. (2011)

PA + det→pocc
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Method Brief description Pros Cons
Suitable for which rarity 
categories? Examples/references

Input data
→Output calculated/
estimate

Ensemble of 
multiple SDMs

Ensemble SDMs The procedure that takes outputs from several 
algorithms of SDMs, weights these outputs based 
on respective model performances (using e.g. AIC) 
and generates single ‘consensus’ predictions by 
model averaging methods

Does not rely on the single best model
Ensemble predictions perform better 

compared to single modelling techniques
Can use variance between models as an 

estimate of uncertainty

All the cons of SDM approaches above
Model averaging also has limitations (e.g. sensitivity to 

performance score and thresholds used)
Predictive performance still questioned

Common species Araújo and New (2007);
Hao et al. (2019, 2020)

PA→relative pocc
P→relative lik

Ensemble of Small 
Models (ESM)

Strategy that consists in modelling the distribution 
of rare species based on fitting a larger number 
of small (bivariate, trivariate, etc.) models, that is 
models with only two predictors at a time (although 
only one or three could also be used), and averaging 
them in an ensemble prediction using weights based 
on model performances (e.g. based on AUC score)

Circumvents the risk of overfitting when 
applying an SDM on too few occurrences 
data

Excellent performance on species data 
with a low number of occurrences

Allows structuring the modelling framework 
according to different scales of drivers 
of species distribution (e.g. local vs. 
climatic predictors)

Requires to choose thresholds of performance 
scores to decide which models are included in the 
ensemble

Remains unclear how this method performs for the 
different forms of rarity, especially the spatially-
biased ones, as it is mainly based on the number of 
occurrences and related IUCN status

ESM performance (compared to both single-model 
Regular SDM and standard Ensemble SDMs) 
depends on the number of species occurrences 
available in the data

Cat4, Cat6 (low density but 
spatially dispersed)

Lomba (2010);
Breiner et al. (2015)

P→relative lik

Bayesian Belief 
Network SDMs

Bayesian Belief 
Network SDMs

(a.k.a. Bayesian networks, causal probability networks, 
acyclic directed graphs) Statistical tool derived from 
graph theory and Bayesian inference that predicts 
the probability of ecological responses to varying 
input assumptions such as habitat and population 
demography conditions and hypothesized causal 
relationships

All the pros related to Bayesian statistical 
frameworks: flexibility, accounting and 
quantification of uncertainties, integration 
of prior knowledge information on the 
rare species of interest, easily updatable 
with new data/information, etc.

Integration, assessment and visualization 
of causal pathways to explain species 
distribution

Due to its visual nature and relative ease 
of use, highly suitable for participatory 
modelling

Requires to discretize input predictors with choices of 
thresholds which can lead to class edge effects (but 
see Aguilera et al., 2010)

More appropriate for risk or conservation category 
assessment than for predicting or mapping species 
distribution

Assumptions and reasoning behind the hypothesized 
influence diagram must be clearly documented/
justified as the latter strongly influences 
predictions

Potentially all (provided 
that enough prior 
knowledge and 
validation data are 
available)

Marcot et al. (2006a,b);
Smith et al. (2007);
Aguilera et al. (2010);
Chen and Pollino (2012);
MacCracken et al. (2012);
Hamilton et al. (2015);
Van Echelpoel et al. (2015)

P→relative lik
PA→relative pocc
ab→relative ab

Occupancy 
downscaling 
modelling

Occupancy 
downscaling 
modelling

Models that describe the OAR are fitted at large grain 
sizes to atlas data and then extrapolated to predict 
occupancy at fine grain sizes

Occupancy-Area Relationship (OAR) (or scale-area 
curve or range-area relationship) (Harte & Kinzig, 
1997; Kunin, 1998) is the relationship between the 
area occupied by a species and the sampling grain 
size. This relationship is positive and its shape is 
characteristic of the species distribution pattern 
(extent, patchiness, prevalence)

By aggregating data at large scales, 
overcomes sampling gaps (false absences 
in atlas data) and effects of sampling biases

No need for covariates

Needs some atlas data
Only determines occupancy in terms of proportion of 

sites or area occupied, i.e. not spatial-explicit
May be subject to some errors/uncertainty from the 

models
Requires to think carefully about how to fit the 

upscaling functions
may not be possible to fit models for some species—-

e.g. very rare, dispersed species, or very common 
widespread species—as the OAR reaches the scale 
of endemism or saturation

Cat1, Cat2, Cat4, Cat5, 
Cat6

Azaele et al. (2012);
Barwell et al. (2014);
Marsh et al. (2019)

PA (atlas 
data)→occupancy 
(as the proportion 
of sites or area 
occupied)

Modelling methods 
commonly 
grouped under 
“site-occupancy 
models”

Mark-release-
recapture 
modelling 
(robust design)

HM using mark-recapture histories to estimate 
population parameters (colonization, extinction, 
etc.), occurrence probability and detectability. 
Requires to fulfil the population closure assumption 
between the temporal replicates and to have 
relatively good temporal replication (robust design). 
Can use covariates to estimate detectability and 
other potential biases.

Provides accurate estimations of population 
parameters (e.g. population size, survivorship, 
fecundity)

Provides accurate estimations of detectability 
(e.g. trap happiness/shyness effects, 
time-varying capture, sex-dependent 
detectability)

Thanks to the robust design principle, if one 
has multiple visits that are separated by 
sufficiently short periods of time, one can 
consider each visit as fulfilling the 
assumption of population closure

Hypothesis-driven
Computationally intensive

All, especially for Cat4, 
Cat5, Cat6, Cat7 (low 
local density) but for 
low local density, it may 
be challenging to get 
enough data for reliable 
estimates

Pollock et al. (1990);
MacKenzie et al. (2002);
MacKenzie (2006);
Willson et al. (2011)

PA + det→pocc

(Continued)
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et al., 2017; Thuiller et al., 2019)), and biases due to sampling 
scales (Keil et al., 2013; Keil & Chase, 2019). Hierarchical models 
(HM) are especially useful due to their flexibility: they describe, 

on the one hand, the true state of nature that is not or only partly 
observable (e.g. variation in occurrence probability potentially 
due to variation in available resources), and on the other hand, 

Method Brief description Pros Cons
Suitable for which rarity 
categories? Examples/references

Input data
→Output calculated/
estimate

Multi-scale 
occupancy 
models

HM site-occupancy model that allows estimation of 
occupancy at different spatial scales to account 
for different scales of habitat, environmental, 
ecological or sampling influences; e.g. local habitat 
vs. landscape-scale effects. The approach accounts 
for the lack of independence of detections within 
a sampling occasion and uses this dependence to 
infer scale-specific occupancy, namely the study 
area scale and the site scale. This method is a 
variation of the classical site-occupancy model 
robust design, except that it does not model 
seasonal colonization and extinction, but simply 
presence or absence at the sample unit

Accounts for the scale-dependence of 
occupancy estimation

Hypothesis-driven
Requires good data with sufficient spatial-temporal 

replicates and detections

All, providing that sufficient 
spatial-temporal 
replicates are available

Nichols et al. (2008);
Mordecai et al. (2011)
Pavlacky et al. (2012);
Hagen et al. (2016)

PA + det→pocc

N-mixture models Royle-Nichols 
models (RN) 
or Bernoulli-
Poisson 
N-mixture 
models (for 
occurrences)

HM that estimates species occurrence probability 
using different submodels (and potentially different 
sets of predictors) for the “detection” and the 
“occurrence” processes. RN model provides the 
conceptual links between the N-mixture models 
for abundances and the classical site-occupancy 
models. RN can estimate abundances from 
spatio-temporally replicated measurements of 
presences/absences, can accommodate detection 
heterogeneity when focusing on occupancy and can 
link occupancy and abundance data in an integrated 
model. Some people consider RN as an occupancy 
model because the modelled data are identical. Can 
account for spatial autocorrelation using covariates 
as random or fixed effects

Provides two useful estimates: one for 
the detection probability and one for the 
occurrence probability

Requires a sufficient amount of spatio-temporal 
replications in the data

Requires good sets of predictors for both the detection 
and the occurrence parts of the model

All, especially for Cat4, 
Cat5, Cat6, Cat7 (low 
local density)

Royle and Nichols (2003);
Kéry and Royle (2015)

PA + det→pocc

N-mixture models 
for abundances

HM that estimate species abundances using different 
submodels (and potentially different sets of 
predictors) for the “detection” and the “abundance” 
processes. For instance, in “The N-mix” model, the 
detection probability can be estimated based on a 
binomial function of some predictors assumed as 
relevant to the detection process (e.g. vegetation 
density). This estimation is then incorporated in 
a (mixed) Poisson model that estimates species 
abundances (based on predictors relevant to the 
species ecology) whilst weighting by the imperfect 
detection (weighted likelihood). Examples of N-
mixture models are: zero-inflated, Poisson-binomial, 
multinomial, Poisson-Poisson, multiscale N-mixture 
models, hurdle models, spatially-explicit density 
models

Provides two useful estimates: one for the 
detectability and one for the relative 
abundances

Provides a fine estimation of species relative 
abundances

With a sufficient amount of data and in some 
circumstances, some of these models can be 
used to relax the population closure 
assumption

Zero-inflated and hurdle models are particularly 
interesting for rare species (due to the high 
risk of data overdispersion), quite intuitive 
to use and relatively easy to apply even in a 
likelihood framework

Most of these models require good quality and a large 
amount of abundance data with both spatial and 
temporal replications (except zero-inflated and 
hurdle models)

Computationally intensive
Requires good sets of predictors for both the detection 

and the abundance parts of the model

All, especially for Cat4, 
Cat5, Cat6, Cat7 (low 
local density)

Welsh et al. (2000), Martin et al. 
(2005), Joseph et al. (2009) 
(zero-inflated N-mixture 
models);

Royle (2004), Dénes et al. (2015) 
(“The N-mix” model);

Kéry and Royle (2015) (Poisson-
binomial/Poisson-Poisson/
multinomial/density models);

Cunningham and Lindenmayer 
(2005), Fletcher et al. (2005), 
Zuur et al. (2009) (hurdle 
models);

Chandler and Hepinstall-
Cymerman (2016) (multiscale 
N-mixture models)

ab + det→relative ab

Occupancy or 
abundance 
modelling 
with multiple 
detection 
methods

Occupancy or 
abundance 
modelling 
with multiple 
detection 
methods

HM that permits simultaneous use of data from 
multiple detection methods for inference about 
method-specific detection probabilities. The 
approach accounts for the lack of independence of 
detections within a sampling campaign and uses this 
dependence to infer method-specific occupancy 
and detectability

Can be used with data that are produced by 
different sampling methods and devices 
(provides device-specific detection 
probability estimates for use in survey 
design)

If the species of interest is locally rare or solitary, 
and one of the detection devices is a method 
that retains (a trap) or repels (a camera's flash) an 
individual upon detection, then the model needs 
to be extended to include different device-specific 
detection probabilities that differ based on 
whether or not the species was detected by one of 
the other devices at the immediate sampling site

All, especially for Cat4, 
Cat5, Cat6, Cat7 (low 
local density)

Nichols et al. (2008);
Giraud et al. (2016);
Bowler et al. (2019)

PA + det→pocc
ab + det→relative ab

Abbreviations: P, presence only; PA, presence/absence; ab, abundance; pocc, probability of occurrence; det, detection probability; lik, likelihood.
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the measurement error (e.g. variation in detection probability 
potentially due to variable observer skills) (Kéry & Royle, 2015). 
Multi-scale hierarchical SDMs account for the fact that increasing 

the sampling extent increases the probability of detecting rare 
species (Rocchini et al., 2017). HMs thus allow imperfect detect-
ability to be considered in the modelling procedure (Table 3). By 

Method Brief description Pros Cons
Suitable for which rarity 
categories? Examples/references

Input data
→Output calculated/
estimate

Multi-scale 
occupancy 
models

HM site-occupancy model that allows estimation of 
occupancy at different spatial scales to account 
for different scales of habitat, environmental, 
ecological or sampling influences; e.g. local habitat 
vs. landscape-scale effects. The approach accounts 
for the lack of independence of detections within 
a sampling occasion and uses this dependence to 
infer scale-specific occupancy, namely the study 
area scale and the site scale. This method is a 
variation of the classical site-occupancy model 
robust design, except that it does not model 
seasonal colonization and extinction, but simply 
presence or absence at the sample unit

Accounts for the scale-dependence of 
occupancy estimation

Hypothesis-driven
Requires good data with sufficient spatial-temporal 

replicates and detections

All, providing that sufficient 
spatial-temporal 
replicates are available

Nichols et al. (2008);
Mordecai et al. (2011)
Pavlacky et al. (2012);
Hagen et al. (2016)

PA + det→pocc

N-mixture models Royle-Nichols 
models (RN) 
or Bernoulli-
Poisson 
N-mixture 
models (for 
occurrences)

HM that estimates species occurrence probability 
using different submodels (and potentially different 
sets of predictors) for the “detection” and the 
“occurrence” processes. RN model provides the 
conceptual links between the N-mixture models 
for abundances and the classical site-occupancy 
models. RN can estimate abundances from 
spatio-temporally replicated measurements of 
presences/absences, can accommodate detection 
heterogeneity when focusing on occupancy and can 
link occupancy and abundance data in an integrated 
model. Some people consider RN as an occupancy 
model because the modelled data are identical. Can 
account for spatial autocorrelation using covariates 
as random or fixed effects

Provides two useful estimates: one for 
the detection probability and one for the 
occurrence probability

Requires a sufficient amount of spatio-temporal 
replications in the data

Requires good sets of predictors for both the detection 
and the occurrence parts of the model

All, especially for Cat4, 
Cat5, Cat6, Cat7 (low 
local density)

Royle and Nichols (2003);
Kéry and Royle (2015)

PA + det→pocc

N-mixture models 
for abundances

HM that estimate species abundances using different 
submodels (and potentially different sets of 
predictors) for the “detection” and the “abundance” 
processes. For instance, in “The N-mix” model, the 
detection probability can be estimated based on a 
binomial function of some predictors assumed as 
relevant to the detection process (e.g. vegetation 
density). This estimation is then incorporated in 
a (mixed) Poisson model that estimates species 
abundances (based on predictors relevant to the 
species ecology) whilst weighting by the imperfect 
detection (weighted likelihood). Examples of N-
mixture models are: zero-inflated, Poisson-binomial, 
multinomial, Poisson-Poisson, multiscale N-mixture 
models, hurdle models, spatially-explicit density 
models

Provides two useful estimates: one for the 
detectability and one for the relative 
abundances

Provides a fine estimation of species relative 
abundances

With a sufficient amount of data and in some 
circumstances, some of these models can be 
used to relax the population closure 
assumption

Zero-inflated and hurdle models are particularly 
interesting for rare species (due to the high 
risk of data overdispersion), quite intuitive 
to use and relatively easy to apply even in a 
likelihood framework

Most of these models require good quality and a large 
amount of abundance data with both spatial and 
temporal replications (except zero-inflated and 
hurdle models)

Computationally intensive
Requires good sets of predictors for both the detection 

and the abundance parts of the model

All, especially for Cat4, 
Cat5, Cat6, Cat7 (low 
local density)

Welsh et al. (2000), Martin et al. 
(2005), Joseph et al. (2009) 
(zero-inflated N-mixture 
models);

Royle (2004), Dénes et al. (2015) 
(“The N-mix” model);

Kéry and Royle (2015) (Poisson-
binomial/Poisson-Poisson/
multinomial/density models);

Cunningham and Lindenmayer 
(2005), Fletcher et al. (2005), 
Zuur et al. (2009) (hurdle 
models);

Chandler and Hepinstall-
Cymerman (2016) (multiscale 
N-mixture models)

ab + det→relative ab

Occupancy or 
abundance 
modelling 
with multiple 
detection 
methods

Occupancy or 
abundance 
modelling 
with multiple 
detection 
methods

HM that permits simultaneous use of data from 
multiple detection methods for inference about 
method-specific detection probabilities. The 
approach accounts for the lack of independence of 
detections within a sampling campaign and uses this 
dependence to infer method-specific occupancy 
and detectability

Can be used with data that are produced by 
different sampling methods and devices 
(provides device-specific detection 
probability estimates for use in survey 
design)

If the species of interest is locally rare or solitary, 
and one of the detection devices is a method 
that retains (a trap) or repels (a camera's flash) an 
individual upon detection, then the model needs 
to be extended to include different device-specific 
detection probabilities that differ based on 
whether or not the species was detected by one of 
the other devices at the immediate sampling site

All, especially for Cat4, 
Cat5, Cat6, Cat7 (low 
local density)

Nichols et al. (2008);
Giraud et al. (2016);
Bowler et al. (2019)

PA + det→pocc
ab + det→relative ab

Abbreviations: P, presence only; PA, presence/absence; ab, abundance; pocc, probability of occurrence; det, detection probability; lik, likelihood.
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integrating prior knowledge, Bayesian Belief Networks explicitly 
decompose causal pathways involved in the capture rate of spe-
cies, including respective influences of detection and occupancy 
in small or incomplete datasets (Uusitalo, 2007): capture can be 
considered dependent on detectability, influenced by date and 
trapping effort, and by occupancy, influenced by the suitability of 
local habitat conditions (Marcot et al., 2006). Such methods have 
already proved useful for modelling species distributions (Van 
Echelpoel et al., 2015) and responses of rare and endangered spe-
cies (Hamilton et al., 2015; Smith et al., 2007; Table 3).

When abundance data from a standardized survey or monitoring 
protocols are available, these can be used to fit rare species distri-
bution models and track distribution changes (Howard et al., 2014). 
However, because such protocols usually do not detect most of the 
rare species, especially clumped and low local-density species (see 
‘how to sample’ section), abundance-based SDMs are rarely possible 
for rare species.

If recapture data are available, distribution modelling can be 
done using classical site-occupancy models and different methods 
developed as mark-release-recapture analyses (MacKenzie et al., 
2017; Pollock et al., 1990; Table 3).

For occurrence data from spatio-temporally replicated mea-
surements of presences/absences, under the assumption of pop-
ulation closure (i.e. if the populations did not exchange propagules 
between the time steps under study), the Royle-Nichols model 
(Kéry & Royle, 2015; Royle & Nichols, 2003) allows occurrence 
probability to be estimated and detection heterogeneity accom-
modated (Table 3; Figure 1d). When ‘unmarked’ abundance data 
are available, N-mixture models can estimate both detectability 
and abundances used in large-scale species distribution model-
ling (Guélat & Kéry, 2018; Jakob et al., 2014; Kéry, 2018; Table 3; 
Figure 1d). When potential sources of measurement bias are known 
(e.g. type of observer, weather, vegetation density), these can 
be integrated as covariates in the latent state submodel (e.g. 
Cunningham & Lindenmayer, 2005).

When data are zero-inflated, as typical for rare species data, vari-
ants of Royle-Nichols or N-mixture models can be applied that allow 
extra parameters and account for data overdispersion. Variants of 
N-mixture models have further been developed that address spatial 
bias and scale dependence, such as variation of sampling grain size 
(Keil et al., 2018) or scales of environmental influence (Chandler & 
Hepinstall-Cymerman, 2016). However, the underlying assumptions 
are quite restrictive for species distribution modelling and further 
simulation studies are needed to assess their performance with rare 
species when assumptions are not met. This approach is also not 
necessarily the most cost-effective strategy when it comes to track-
ing species distribution changes over time compared with presence/
absence data (Joseph et al., 2006).

When multiple types of data are available (presences, presence/
absence, abundance), their combination within single modelling 
frameworks provides valuable insights into predicting species dis-
tributions, occupancy, even abundance (Table 3). Even if available 
over a restricted spatial extent, multiple sources of abundance data 

can be used together with more extensive data, such as occupancy 
surveys or opportunistic observations. HMs can include different 
submodels for the different sources of data, and potential detection 
biases, and incorporate environmental data as potential predictors 
of occupancy and/or abundance. Such methods allow extrapola-
tion and even comparison of rare species’ distributions across large 
spatial scales (e.g. Bowler et al., 2019; Giraud et al., 2016) and po-
tentially for all categories of rarity if data sources are available and 
models well built (Figure 1d).

To summarize, the model choice will mainly depend on the na-
ture of the data and the biases involved. From presence only, to 
presence/absence, to abundance, in Figure 1d, there is a change 
in the temporal comparability of SDMs, and thus their ability to 
track distributional changes. In the top row, the output is a rela-
tive likelihood, which is not comparable even for a given species 
over multiple time steps. Naïve presence/absence SDMs provide 
an estimate that does not separate the probability of occurrence 
from detectability, but if we assume detectability to be constant 
across time and space (including no drastic change in abundances), 
the resulting probability map is comparable for a given species 
over time. Finally, population size information allows the separate 
estimation of detectability and probability of occurrence, which 
is comparable over time, species and space. Comparability is im-
portant as it enables conservationists to assess changes in the en-
vironmental suitability, and ideally (see Dallas & Hastings, 2018; 
Jiménez-Valverde et al., 2021; Weber et al., 2017), in the distribu-
tion of rare species that could require revision of a species’ status 
and protection needs.

More generally, whatever the type of rarity, several method-
ological aspects are to be considered to ensure SDM quality, in-
cluding predictor selection (e.g. Le Rest et al., 2014; Saupe et al., 
2012; Williams et al., 2012), model averaging (e.g. Burnham & 
Anderson, 2004; Dormann et al., 2018), spatial-explicit cross-
validation (e.g. Roberts et al., 2017), optimization of model per-
formance (e.g. Anderson & Gonzalez, 2011; Norberg et al., 2019; 
Radosavljevic & Anderson, 2014), and testing or improvement of 
the extrapolation abilities of the fitted models (e.g. Mesgaran et al., 
2014; Owens et al., 2013; Qiao et al., 2019; Stohlgren et al., 2011; 
Zurell et al., 2012).

5  |  CONCLUSION AND FUTURE 
PERSPEC TIVES

Protecting species diversity implies protecting rare species. 
However, surveying and modelling rare species involve considerable 
methodological challenges. In this paper, we have identified how 
the main decisions on sampling strategy condition properties of the 
data, and how these in turn condition the range of appropriate mod-
elling methods. With this perspective, we provide guidelines to op-
timize monitoring and modelling of rare species depending on their 
rarity characteristics and to ensure consistency between sampling 
methods, and modelling approaches (Figure 1).
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Significant data on the occurrence of species is collected by 
citizen scientists (Amano et al., 2016; Chandler et al., 2017). It 
is highly valuable for monitoring biodiversity at different scales, 
but often biased and limited to specific areas. Whilst there are 
ways to correct biases in such data (Bird et al., 2014; Robinson 
et al., 2018), for monitoring “rarest” species (i.e. narrow distribu-
tional range, clumped population, low local density), a systematic 
species-targeted sampling design may be preferred. Significant 
advances are expected from advanced remote sensing tech-
niques, genetic tools and using detection dogs, all with the po-
tential to significantly increase the detection rate of rare species 
at comparatively low cost and with more or less bias towards the 
species. Above all, future research is still needed to integrate the 
type of rarity more explicitly into decisions on how and where to 
sample with the selection of appropriate models. Another chal-
lenge with respect to species conservation is that, although the 
rarity status is defined with respect to endemicity over a given 
period, it may be dynamic in the longer term, requiring constant 
adaptation of assessment strategies.

Considering most forms of rarity, our synthesis highlights the par-
ticular potential of HMs as a flexible tool to improve rarity modelling 
whilst accounting for spatial, observer and species-specific biases. 
Advances in zero-inflation modelling, in particular, have to be better 
integrated into rare species distribution modelling as both the con-
ceptual and technical foundations of these approaches impact the 
rarity sampling and modelling issues. Considering the rarest forms 
of rarity, our synthesis suggests that recent HM developments to 
combine multiple sources of data are extremely promising (Figure 1).

Other promising perspectives have recently emerged, such as 
functional rarity modelling (Carmona et al., 2017; Violle et al., 2017) 
and the use of co-occurring species information (or the “neighbourly 
advice” (McInerny & Purves, 2011)) and of positive associations 
among rare species (Calatayud et al., 2019; Hines & Keil, 2020) as 
potentially valuable information to model rarity distribution. Other 
model developments include harnessing information from other 
sources that either directly informs a species’ distribution at larger 
scales, such as incorporating expert-drawn range maps (Merow et al., 
2017) or elevation ranges (Ellis-Soto et al., 2021) as model offsets. 
Joint species distribution models (JSDMs), which model multiple 
species simultaneously to infer the species’ environmental response 
based on species co-occurrences (Ovaskainen & Soininen, 2011; 
Pollock et al., 2014), often incorporate ancillary information such 
as trait (Pollock et al., 2012) or phylogenetic similarity (Ovaskainen 
et al., 2017) and are promising further developments for rare spe-
cies modelling (Tobler et al., 2019). Finally, machine-learning-based 
methods, including non-parametric methods, and methods tolerant 
of unstructured data, have shown promise for modelling and map-
ping rarity with a strong predictive ability (Pouteau et al., 2012; 
Robinson et al., 2018). Further research and sensitivity analyses are 
needed to assess the appropriateness of these methods in the work-
flow of rarity sampling and modelling, depending on the rarity type 
of the species.
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