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Summary

1. Rapid environmental changes are threatening biodiversity and exposing species to novel ecological and evolu-

tionary pressures. The scientific community increasingly recognizes the need for dynamic models integrating suf-

ficient complexity both to improve our understanding of species’ responses to environmental changes and to

inform effectivemanagement strategies.

2. Using three illustrative examples, we introduce a novel modelling platform, RangeShifter, which integrates

complex population dynamics and dispersal behaviour, includes plastic and evolutionary processes and simu-

lates scenarios on spatially explicit landscapes. The software provides functionality for a wide variety of model-

ling applications ranging from applied questions, where it can be parameterized for real landscapes and species

to compare alternative potential management interventions, to purely theoretical studies of species’ eco-evolu-

tionary dynamics and responses to different environmental pressures.

3. RangeShifter provides an important tool for facilitating the advancement of ecological theory on species’ spa-

tial dynamics in response to environmental changes, and linking it directly to application in biodiversity conser-

vation.

Key-words: dynamic modelling, individual-based modelling, environmental change, dispersal,

population dynamics, connectivity, population viability

Introduction

Habitat loss, habitat fragmentation and climate change consti-

tute major threats to species persistence, exposing species to

novel ecological and evolutionary pressures and challenging

conservation biologists to developmitigation strategies (Loarie

et al. 2009; Dawson et al. 2011). A concerted effort by the eco-

logical and evolutionary communities aims to understand how

we should expect species to respond to rapid environmental

changes and where and how we should intervene. Clearly,

understanding how complex eco-evolutionary systems will

respond to environmental drivers requires modelling species’

spatial dynamicsby integratingdemography,dispersal andeco-

evolutionary processes. The correlative species distribution

models, which have dominated the recent literature, are, by

themselves, insufficient, and there is a major demand for inte-

grateddynamicmodels (Guisan&Thuiller2005;Franklin2010;

Huntleyet al.2010;Schurret al.2012;Thuilleret al.2013).

A dynamic model of species’ responses to climate change

should incorporate demography and dispersal at its core.

A growing body of theoretical and empirical studies has high-

lighted these as two key processes for determining how species

will respond to rapid changes through range shifting or

through adaptation enabling local persistence. Dispersal and

demography are vital for determining survival in fragmented

landscapes, where the capability of individuals to disperse

between small subpopulations allows the system to function as

a viable metapopulation. Moreover, they are the main drivers

of the speed of a species’ range expansion into newly suitable

areas (Neubert & Caswell 2000; Clark, Lewis & Horvath

2001). Demographic and dispersal traits often vary between

individuals, and according to local population density and

environmental conditions. They are also likely to be influenced

by environmental changes and evidence for both plastic and

evolutionary responses is accumulating (Travis et al. 2013).

Substantial progress in understanding the causes and conse-

quences of dispersal has occurred over recent decades (Clobert

et al. 2012). Dispersal is now recognized to comprise three dis-*Correspondence author. E-mail: greta.bocedi@abdn.ac.uk
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tinct phases, emigration, transfer and settlement (Clobert et al.

2009, 2012). Theory clearly demonstrates that the details of

these phasesmay strongly influence the potential spread rate of

a species and also highlights that behavioural rules associated

with them can come under strong selection during range shifts

(Barto�n et al. 2012). However, while a framework for model-

ling eco-evolutionary dispersal dynamics accounting for these

distinct phases has been developed (Travis et al. 2012), there

are no existing modelling platforms for simulating this degree

of complexity, either to predict species responses to climate

change, or generally for tackling spatial ecological and evolu-

tionary questions.

In parallel with the progress in understanding dispersal has

been a substantial advance in movement ecology (Nathan

et al. 2008; Morales et al. 2010; Jeltsch et al. 2013). We now

have much greater ability to obtain and analyse movement

data and to model how organisms move in complex environ-

ments (Cagnacci et al. 2010; Morales et al. 2010). Movement

is key to the transfer phase of dispersal and a natural way to

meet themajor outstanding challenge of integratingmovement

modelling with population dynamics (Morales et al. 2010) is

through the dispersal modelling framework recently proposed

(Travis et al. 2012).

A major division has existed between the approaches

employed for modelling local-scale population responses to

landscape changes, such as habitat fragmentation, and those

for modelling large-scale distributional responses to climate

change. Population viability analyses (Pe’er et al. 2013) and

metapopulation modelling (Hanski & Ovaskainen 2000, 2003)

approaches for determining the persistence of species in frag-

mented landscapes have incorporated, to differing degrees,

both population dynamics and dispersal. In contrast, broad-

scale projections of species’ responses to climate change are lar-

gely based on static species distributionmodels (SDMs), which

regress current distributions on climate, and then project future

distributions from future climate scenarios (Elith & Leathwick

2009). However, there is now substantial interest in integrating

these two approaches to provide a more mechanistic under-

standing and predictive capability of how species will respond

to potentially interacting environmental drivers (Huntley et al.

2010; Schurr et al. 2012; Conlisk et al. 2013; Thuiller et al.

2013). Integrating SDMs with process-based models for spe-

cies’ range dynamics will undoubtedly open new opportunities

to improve our understanding of how species are likely to

respond to combined pressures (Dormann et al. 2012).

An individual-based modelling (IBM) approach (Grimm &

Railsback 2005) holds much appeal for dynamic modelling of

species’ responses to environmental changes for two important

reasons. First, individuals may vary in their key demographic

and dispersal traits. This variability, which may be due to heri-

table differences, environmental heterogeneity or both, may

play an important role in determining eco-evolutionary popu-

lation-level responses. Secondly, local populations in frag-

mented landscapes or at range margins are frequently small.

Here, demographic stochasticity is significant; for example,

modelling stochastic processes at the individual level is crucial

to avoid overestimation of spread rate (Clark, Lewis &

Horvath 2001). An IBM approach accounts for the role of

demographic and dispersal stochasticity and facilitates the

incorporation of individual variation in life-history traits,

behaviours and genetics. While IBMs have been used success-

fully for theory development [e.g. on causes and consequences

of dispersal (Clobert et al. 2012)] and for (typically localized)

species-specific tactical models (Grimm & Railsback 2005),

their application inmulti-purpose,multi-scale simulationmod-

elling for investigating species’ responses to environmental

changes is still in its infancy.

In response to recent calls for moving towards integrated

dynamic modelling approaches (Franklin 2010; Huntley et al.

2010; Schurr et al. 2012; Thuiller et al. 2013), we developed

RangeShifter, a novel dynamic modelling platform for investi-

gating species’ spatial dynamics, which provides flexibility in

terms of its spatial extent and resolution, and in the degree of

complexity incorporated in representing different processes.

The RangeShifter software is unique in at least two key

respects: it includes the capability for much greater realism in

modelling the dispersal process and, as an IBM, allows for

inter-individual variability and accounts for potentially key

stochasticities in demographic, dispersal and evolutionary pro-

cesses. RangeShifter offers possibilities for a broad range of

simulation-based modelling experiments, from fundamental

theoretical investigations of eco-evolutionary dynamics, to

strategic modelling of management options and real species’

range dynamics. The software is coded in C++ and packaged

as a freely available, standalone application for Microsoft

Windows (Appendix S1). A graphical user interface facilitates

initial model exploration and is suitable also for demonstra-

tions and teaching purposes. However, RangeShifter can also

be run in batch mode for complex and computationally

demanding simulations. Here, we describe the general struc-

ture of the model and demonstrate its capabilities with three

examples. For a detailed description of the model, we refer to

the RangeShifter v1�0 user manual (Appendix S2) and to

Appendix S3.

Model description

RangeShifter is an individual-based, spatially explicit and sto-

chastic dynamic model (Fig. 1a). At its core is the integration

of population dynamics and dispersal. The model runs over

grid-based landscapes, which can be land-cover maps, habitat

suitability maps or artificial maps produced by an embedded

landscape generator. Initial species’ distribution data can be

imported. An environmental gradient impacting population

dynamics can be superimposed on the landscape and the gradi-

ent can be shifted through time to simulate climate change.

Temporal environmental stochasticity in population growth

rate or in carrying capacity can be included, allowing for differ-

ent degrees of temporal autocorrelation at either global or

local scale.

The population dynamics module provides options for dif-

ferent levels of complexity, details and rationale (Fig. 1b). The

population can have discrete generations or it can be stage-

structured (overlapping generations). For stage-structured
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models, transition matrices [as in classic stage-based matrix

models (Caswell 2001)] are converted into equivalent probabil-

ities for the IBM, which yields three particular advantages.

First, matrix models are widely applied, a large community is

familiar with them and they have been constructed and param-

eterized for many species. This makes parameterization easier

and bridges between analytical models and IBMs, the joint use

of which can benefit applied ecology and conservation (Travis

et al. 2011). Secondly, it minimizes the number of parameters.

Thirdly, it allows for cross-validation between the two

approaches.

The population model in RangeShifter can be asexual

(female-only) or sexual. Different mating systems can be simu-

lated and demographic parameters can be sex-dependent.Den-

sity dependencies can be incorporated, acting independently

on fecundity, survival and development and can be stage-

dependent. Importantly, the model can be either cell- or patch-

based, where either the cell or the patch (an assemblage of

neighbouring cells) defines the population unit and hence the

scale at which density dependencies act.

Dispersal is modelled as successive emigration, transfer and

settlement phases (Clobert et al. 2009; Fig. 1c), following

recent work highlighting the importance ofmodelling dispersal

as a complex three-phase process, with associatedmechanisms,

context dependencies and costs (Bonte et al. 2012; Travis et al.

2012; Altwegg et al. 2013). Emigration can be density-indepen-

dent or density-dependent. The transfer phase either utilizes a

phenomenological dispersal kernel or, addressing the demands

for integration of movement behaviours and population

dynamics (Morales et al. 2010), one of two mechanistic move-

ment models [Stochastic Movement Simulator, SMS (Palmer,

Coulon & Travis 2011) or correlated random walk]. Impor-

tantly, through using these movement models, the dispersal

kernel becomes an emergent property of the interaction

between individual behaviour and landscape characteristics

(Hovestadt et al. 2012). In the last phase, the settlement deci-

sion can be a function of habitat suitability, a plastic response

to density or availability of mates or a combination of

these. All three phases of dispersal can be sex- and/or

stage-dependent.

RangeShifter allows for inter-individual variability in dis-

persal traits. Individuals possess loci (assumed to be unlinked)

that carry trait-coding alleles, which are inherited from parents

assuming full heritability. Dispersal traits can also evolve fol-

lowing specifiedmutation probabilities andmutation sizes.

Example applications

RANGE EXPANSION, LONG-DISTANCE DISPERSAL AND

ENVIRONMENTAL STOCHASTIC ITY

We use a hypothetical grassland species to illustrate Range-

Shifter’s capability for modelling range expansion at national

scales and to show how accounting for rare long-distance dis-

persal events and environmental stochasticity can considerably

change the final projected species’ distribution (Fig. 2; for

methods see Appendix S4). Initially, the species occurred only

inside a set of 10 km9 10 km squares, which we assumed repre-
sented its recorded range. Population dynamics were run at a
1 km 9 1 km resolution. The species was allowed to expand its
range for 100 years, mimicking situations where constraints to
expansion are removed. Assuming all emigrants draw their

(a)

(b) (c)

Fig. 1. The RangeShifter platform. (a) General framework of RangeShifter. Inputs and features related to the abiotic environment are illustrated in

green, while in yellow are examples of possible types of output. (b) Schematic of the main components of the population dynamics module and (c)

the dispersal module, over a screenshot of the relevant windows in the graphical user interface.
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displacement distances from a dispersal kernel of mean 2 km
resulted in negligible range expansion (Fig. 2a; mean
rate � SD = 0�93 � 0�041 cells year�1). However, when 1%
dispersers adopted a kernel of mean 10 km, a substantial increase
in the rate of range expansion and in the variability between runs
was observed (Fig. 2b; mean rate = 15�1 � 9�44 cells year�1).
Moreover, the expansion front became discontinuous, proceeding
from stochastic long-distance disjointed colonization foci
(Fig. 2e). Introducing temporal environmental stochasticity also
had an important effect, almost halving the mean rate of expansion
(Mustin et al. 2013; temporally uncorrelated: mean rate = 8�7
� 7�96 cells year�1, Fig. 2c; temporally autocorrelated: mean
rate = 8�9 � 8�52 cells year�1, Fig. 2d).

LANDSCAPE-SCALE CONNECTIV ITY, MATRIX

PERMEABIL ITY AND DISPERSAL BEHAVIOUR

RangeShifter enables different landscape-scale applications for

issues related to connectivity, species persistence and conserva-

tionmanagement.We illustrate this potential and demonstrate

some of the complexity that can be modelled, by simulating

a hypothetical species inhabiting a woodland network within

a highly anthropogenic landscape (Fig. 3). We show how

the assumptions made regarding demographics, dispersal

behaviour and habitat-dependent movement mortality can

substantially alter projected outcomes. We simulated for

100 years a patch-based, stage-structured population exhibit-

ing density-dependent emigration and initialized in a single

patch (formethods see Appendix S4). Themeasures chosen for

illustrating the connectivity between the initial patch and the

rest of the woodland network (i.e. final probability of occu-

pancy andmean time to first colonization) highlight the depen-

dency of outcomes on the landscape characteristics and

movement abilities of the species and, importantly, also on the

population dynamics. Notably, these measures both represent

multi-generation connectivity.

Connectivity depended upon how dynamics and dispersal

were modelled. A sexual species, whose individuals had to find

a mate to colonize new patches, had occupied only 17 � 3�0%
of suitable patches after 100 years (Fig. 3b).When females set-

tled as soon as they found a patch of suitable habitat andmales

settled only in patches with female(s) present, the overall patch

occupancy increased to 27 � 7�5% (Fig. 3c). In a female-only

model, where mate-finding no longer limited colonization,

patch occupancy increased to 64 � 6�5% (Fig. 3d). These

results were obtained assuming that dispersing individuals

responded to the landscape in terms of movement choices, but

that per-step mortality was constant across different landscape

types. Introducing potentially more realistic habitat-specific

movement mortalities, specifically higher across roads, urban

(a) (b) (e)

(c) (d)

Fig. 2. Species’ range expansions and environmental stochasticity. The rate of range expansion (no. of occupied 1 km cells dominated by semi-natu-

ral grassland) over a period of 100 years of a hypothetical grassland species located initially in the 10 km 9 10 km cells in southern Englandmarked

in yellow in (e). (a) The dispersal distance of each individual is drawn from a negative exponential kernel of mean 2 km; (b) same as (a) except that

1%of individuals exhibit long-distance dispersal drawn fromanegative exponential kernel ofmean 10 km; (c) same as (b) but the species is subjected

to temporally uncorrelated environmental variation in maximum growth rate; (d) same as (b) but with temporally correlated variation (autocorrela-

tion coefficient j = 0�7) in maximum growth rate. (a–d) Each line depicts one of the 20 replicate runs. (e) Example output map produced byRange-

Shifter showing the species’ distribution for a single replicate in (b), 90 years after the start of range expansion as marked by the red square.

Population density within each occupied 1 km cell is depicted fromdark red (low) to orange (high).Note the recently established outlying subpopula-

tion resulting from long-distance dispersal near the coastline in west Wales. Cells dominated by semi-natural grassland are shown in light green,

woodland in dark green, improved grassland in light brown, arable in pale pink, heath/bog inmauve and other habitats (urban, montane, coastal) in

grey. Dominant habitat types are derived from theU.K. LandCoverMap 2007© and data base rights NERC (CEH) 2011. All rights reserved.
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Land cover (movement costs)
Semi-natural broad-leaved woodland (cost 1)
Planted/Felled broad-leaved & mixed woodland, shrubs, bracken (cost 1)
Heathland, marshy grassland (cost 3)
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Planted/Felled coniferous woodland, semi-improved grassland, swamp (cost 10)
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(c)
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Fig. 3. Dependence of landscape connectivity on the settlement behaviour and movement model assumed for dispersal. (a) Land-cover types and

relative costs to movement (map derived from Watts et al. (2010); 10 m 9 10 m resolution). The green patches represent patches of semi-natural

broad-leaved woodland, those with area ≥ 1 ha were considered as breeding habitat for the simulated species. In all cases, individuals were initially

introduced in the red-bordered patch. (b–e) Left panels: occupancy probability for each patch after 100 years calculated over 20 replicates for the

four experiments (see Appendix S4). Right panels: mean time to first colonization for each patch that had occupancy probability > 0 at year 100.

(b) Sexual model with both sexes settling only in the presence of amate. (c) Sexual model where female dispersers settle in suitable patches regardless

of males, while males settle only when finding a mate. (d) Female-only model. (e) Same model as in (b) but with habitat-specific per-step mortality.

All mapswere producedwithArcGIS10�.
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and arable (Fig. 3e; see Appendix S4), substantially reduced

network connectivity, both in terms of overall patch occu-

pancy (6 � 2�4%) and waiting time to colonization (Fig. 3b,e,

right-hand panels).

EVOLUTION OF DISPERSAL DURING RANGE SHIFT ING

As an illustrative example of the broad range of theoretical

applications of RangeShifter, we modelled dispersal evolving

across a species’ range during climate change. We illustrated

how the evolution of emigration probabilities and dispersal

distances can be modelled jointly and how a response to envi-

ronmental change may differ when accounting for evolution of

only one or both traits (Fig. 4; for methods see Appendix S4).

In agreement with existing theory (Dytham 2009), across a sta-

tionary gradient (before year 500) dispersal strategies became

spatially structured, having higher emigration probabilities

and/or dispersal distances at the range margins (Table 1).

When the gradient started shifting northwards, the species

started falling behind its suitable space, and the range

contracted. Simultaneously, increasing dispersal evolved, start-

ing from the leading edge and gradually surfing backwards,

enabling the species eventually to keep track of its suitable cli-

mate space. At the end of the shifting period (year 800), dis-

persal distances and emigration probabilities had increased

across the whole range. Interestingly, after 400 years of the

post-shifting period, emigration probabilities had evolved back

to pre-change values, whereas dispersal distances remained at

the level reached at the end of the shifting phase.

When emigration probabilities and dispersal distances

evolved simultaneously (third experiment, Appendix S4), the

same pattern occurred (Fig. 4). While emigration probability

changed in a comparable way to when evolving alone, dis-

persal distance increased to a lesser extent than when evolving

independently. Note also that there was high variability among

replicates, suggesting that stochastic founder effects at the

range front and genotypes surfing backwards from the leading

edge are important processes influencing the evolutionary and

ecological dynamics of range shifting. Notably, whether emi-

gration, dispersal distance or both evolved, had substantial

consequences on total population abundance and number of

cells occupied, changing the range dynamics during the shifting

(a)

(b)

Fig. 4. Evolution of dispersal during range shifting. (a) The vertical panels represent the changes through time of emigration probability (lower

strips) andmean dispersal distance (upper strips) over a single simulationwhere both traits are evolving. The numbers at the top indicate time (years).

Each pixel represents a population, and the colours depict the mean trait value for the population. The range is shifting northwards (from bottom to

the top) fromyears 500 to 800. (b) Changes in the cell occupancy (proportion of suitable occupied cells) through timewhen only emigration probabil-

ity evolves (green), only dispersal distance evolve (blue) or both traits evolve (white). The lines represent themean of 20 replicates (see Appendix S4).
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phase. In fact, when both traits evolved, the rescue of the spe-

cies was much quicker than when only one trait evolved

(Fig. 4b). Clearly, more work is needed to understand the role

that multiple trait evolution plays in driving spatial population

dynamic processes including species responses to climate

change.

Discussion

The novel dynamic modelling platform, RangeShifter, intro-

duced here responds to the ecological and evolutionary com-

munities’ demands for integrated dynamic models (Huntley

et al. 2010; Morales et al. 2010; Schurr et al. 2012; Thuiller

et al. 2013) by representing population dynamics and dispersal

behaviours in an individual-based framework and allowing

them to be simulated on landscapes at different scales. Further-

more, it accommodates inter-individual variability and is fully

stochastic, enabling necessary consideration of different

sources of uncertainty (Conlisk et al. 2013).

In three exemplary studies, we illustrated some of the capa-

bilities and features of the software. We showed its potential

for modelling real systems from national to local scales,

accounting for habitat heterogeneity, landscape structure and

environmental stochasticity. The platform provides flexibility

for modelling species in terms of the complexity included in

population dynamics and dispersal. As the first two examples

show, biological details and consideration of environmental

stochasticity and landscape heterogeneity can strongly influ-

ence conclusions regarding range expansion and landscape

connectivity. This emphasizes how utilizing a modelling plat-

form, which can account for such complexity, is crucial to

assess and potentially improve the reliability of projections as a

basis for conservation planning.

The third example was illustrative of themany potential the-

oretical applications of RangeShifter. We explored the eco-

evolutionary dynamics of a species range during shifting of an

environmental gradient. We showed how RangeShifter can be

used to model inter-individual variability in, and evolution of,

different traits. This exemplified the likely complexity of evolu-

tionary responses to environmental changes and highlights

how this software, with the capability of providing individual-

based outputs at high spatio-temporal resolution, can help in

gaining better understanding of these dynamics.

The design of RangeShifter exploits recent advances in pop-

ulation dynamics and dispersal theory. Dispersal is clearly a

key determinant of species’ spatial dynamics and responses to

rapid changes. However, an insufficient representation of dis-

persal is still a major limitation in many methods dealing with

species’ distribution and local connectivity (Baguette & Van

Dyck 2007; Bullock et al. 2012; Travis et al. 2013). In contrast,

RangeShifter allows researchers tomodel dispersal explicitly in

its three phases and consider different context dependencies

and responses to landscape structure. Promisingly, under-

standing of and data related to these three phases are increas-

ing in number rapidly. This is being accelerated by recent

experimental developments, such as the Metatron (Legrand

et al. 2012), specifically established to study dispersal pro-

cesses and spatial dynamics under the same theoretical frame-

work adopted in RangeShifter. Furthermore, technological

advances facilitate the collection of increasing quantities of

Table 1. Evolution of dispersal during range shifting: example of high-resolution spatio-temporal, individual-based outputs from RangeShifter.

Themean and the standard deviation of the dispersal distance and emigration probability are calculated over the 100 north-most (front), middle and

south-most (back) individuals in each replicate. Means and standard deviations were then averaged across 20 replicates. Values are reported for

three different scenarios (blue): only mean dispersal distance, only emigration probability and both traits evolving. The yellow cells highlight how

RangeShifter provides spatially explicit individual-level output data at high temporal resolution (minimumone reproductive season).Note the differ-

ence between the two traits when they are evolving alone (green cells): both traits are structured along the gradient at the starting of climate change

(year 500) and dispersiveness increases as the shifting progresses. However, after 400 years following the cessation of climate change, while emigra-

tion probability has evolved back close to the initial values, the mean dispersal distance has not. In this example, when the two traits evolve concur-

rently, emigration probability shows patterns that are comparable to when it evolves independently, while the mean dispersal distance increases less

that it does when evolving alone (purple cells)

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 388–396
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movement data, and thus, high-quality data on how multiple

species move across complex landscapes during dispersal will

soon become available (Cagnacci et al. 2010). RangeShifter

provides an ideal complement to these empirical advances,

which will provide data and understanding to better parame-

terize the model. In turn, RangeShifter can help to generate

hypothesis to be tested empirically.

RangeShifter is already a complex platform, which inte-

grates several components recognized as fundamental for

tackling problems related to species’ spatial dynamics under

environmental changes. Importantly, it also provides a solid

foundation on which further components can be added. Here,

we identify three key areas for future progress. The first is the

explicit incorporation of climate. Gradients that can represent

climate are already available for use and RangeShifter could

be easily modified to read a time-series of changing land-

scapes to be used as a ‘hybrid’ model by coupling it with

SDM projections (Conlisk et al. 2013). This immediately pro-

vides advantages over many existing exercises taking this

approach owing to its greater detail in population dynamics

and, especially, dispersal. However, we believe that properly

integrating climate requires building explicit functional rela-

tionships between species’ life-history traits and climatic vari-

ables. Methods to estimate parameters for such relationships

are currently developing, and one, which makes use of a hier-

archical Bayesian framework, has been demonstrated in silico

(Pagel & Schurr 2012; Schurr et al. 2012). A promising ave-

nue could be enhancing RangeShifter such that it can be used

with approximate Bayesian computation methods (Beaumont

2010; Hartig et al. 2011). This would allow the direct estima-

tion of model parameters, especially of the species’ traits/cli-

mate relationships, from relatively common data such as

species’ distributions and abundance. A more data-demand-

ing possibility would be to estimate the functional relation-

ships with climate empirically and build them directly into the

model. While this might be tractable for modelling a handful

of data-rich species, it is likely to be difficult to generalize and

apply for multi-species modelling.

The second areawherewe envisage progress is incorporating

interspecific interactions. In many cases, they are known to

influence species persistence locally as well as range dynamics

(Hellmann, Prior & Pelini 2012; Urban, Zarnetske & Skelly

2013; Wisz et al. 2013). RangeShifter has the potential to add

interspecific interactions, but the current challenge is to under-

stand the level of complexity required to represent them. In a

recent theoretical exercise (Bocedi et al. 2013), a trial version

of RangeShifter was extended to incorporate simple competi-

tive interactions and local adaptation to climate. This explor-

atory work demonstrates that the interplay between these two

processes can lead to unexpected range dynamics of two com-

peting species during a period of climate change.

Thirdly, RangeShifter has started incorporating evolution-

ary processes, which are increasingly recognized as being as

important as ecological processes for species’ responses to envi-

ronmental changes (Norberg et al. 2012; Thuiller et al. 2013;

Travis et al. 2013). Importantly, the individual-based nature

of this platform opens the possibility for including a fully

mechanistic genetic module, both for neutral and for adaptive

genetics, where genetic architecture (e.g. linkage, dominance,

epistasis, pleiotropy) and processes (e.g. point mutations,

recombination) can be explicitly and stochastically modelled

(Hoban, Bertorelle & Gaggiotti 2011). This development,

together with the increasing amount of available genetic data,

will provide many opportunities for both theoretical and

applied studies. These include understanding the causes and

consequences of local adaptation as a function of genetic archi-

tecture, landscape structure and species demographic and dis-

persal traits, in silico testing of existing methods for inferring

dispersal from landscape genetic data, and improved ability to

predict the likelihood that species will adapt quickly enough in

response to projected environmental changes.

In conclusion, RangeShifter fills a major gap in the field of

eco-evolutionary research by providing a user-friendly plat-

form that will make individual-based simulation of species’

dynamics on realistic landscapes much more accessible to

stakeholders. We anticipate that the development of Range-

Shifter will have a similar positive impact on this field that

genetic simulation packages have had on population, evolu-

tionary and landscape genetics (Hoban, Bertorelle &Gaggiotti

2011). Importantly, the platform also provides a vehicle for

bringing theoretical eco-evolutionary dynamics and applied

modelling for conservation closer together, reducing the lag

between development of theory and its uptake for ecosystem

management (Benton et al. 2007).
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