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Summary

1. Dispersal is fundamental to ecological processes at all scales and levels of organization, but pro-
gress is limited by a lack of information about the general shape and form of plant dispersal kernels.
We addressed this gap by synthesizing empirical data describing seed dispersal and fitting general
dispersal kernels representing major plant types and dispersal modes.
2. A comprehensive literature search resulted in 107 papers describing 168 dispersal kernels for 144
vascular plant species. The data covered 63 families, all the continents except Antarctica, and the
broad vegetation types of forest, grassland, shrubland and more open habitats (e.g. deserts). We clas-
sified kernels in terms of dispersal mode (ant, ballistic, rodent, vertebrates other than rodents, vehicle
or wind), plant growth form (climber, graminoid, herb, shrub or tree), seed mass and plant height.
3. We fitted 11 widely used probability density functions to each of the 168 data sets to provide a
statistical description of the dispersal kernel. The exponential power (ExP) and log-sech (LogS)
functions performed best. Other 2-parameter functions varied in performance. For example, the log-
normal and Weibull performed poorly, while the 2Dt and power law performed moderately well. Of
the single-parameter functions, the Gaussian performed very poorly, while the exponential performed
better. No function was among the best-fitting for all data sets.
4. For 10 plant growth form/dispersal mode combinations for which we had >3 data sets, we fitted
ExP and LogS functions across multiple data sets to provide generalized dispersal kernels. We also
fitted these functions to subdivisions of these growth form/dispersal mode combinations in terms of
seed mass (for animal-dispersed seeds) or plant height (wind-dispersed) classes. These functions pro-
vided generally good fits to the grouped data sets, despite variation in empirical methods, local con-
ditions, vegetation type and the exact dispersal process.
5. Synthesis. We synthesize the rich empirical information on seed dispersal distances to provide
standardized dispersal kernels for 168 case studies and generalized kernels for plant growth form/
dispersal mode combinations. Potential uses include the following: (i) choosing appropriate dispersal
functions in mathematical models; (ii) selecting informative dispersal kernels for one’s empirical
study system; and (iii) using representative dispersal kernels in cross-taxon comparative studies.

Key-words: dispersal distance, dispersal location kernel, dispersal mode, exponential, exponential
power, Gaussian, log-sech, plant height, probability density function, seed mass

Introduction

Good estimates of plant dispersal distances are required by
ecologists in their attempts to understand and model processes
such as local interactions (Bolker & Pacala 1997), species’

ability to track climate change (Travis et al. 2013), population
dynamics in fragmented landscapes (Gilbert et al. 2014),
invasions (Hastings et al. 2005), metapopulation persistence
(Ovaskainen & Cornell 2006) and evolutionary change (Hal-
latschek & Fisher 2014). Furthermore, a recent systematic
review concluded that limited dispersal knowledge often com-
promises conservation planning (Driscoll et al. 2014). The*Correspondence author. E-mail: jmbul@ceh.ac.uk
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holy grail for dispersal ecologists is to develop mechanistic
models of dispersal, which represent the physical processes
involved in seed movement. These allow predictions of seed
dispersal de novo and avoid the great effort required to mea-
sure dispersal directly (Bullock, Shea & Skarpaas 2006).
Mechanistic models have been realized for wind dispersal
(Nathan et al. 2011), and their predictions have been used in
models of spatial population dynamics (Skarpaas & Shea
2007; Soons & Bullock 2008; Bullock et al. 2012). While
there is some progress towards mechanistic representations of
seed dispersal by certain other vectors, such as by vertebrates
(Bullock et al. 2011; Cortes & Uriarte 2013) or water
(Thompson et al. 2014), we remain a long way from mecha-
nistic models applicable to every seed dispersal process.
While work towards mechanistic models should continue,

remarkably little use has been made of empirical plant dispersal
kernels in elucidating general information for use by ecologists.
Plant dispersal data, gathered for a wide range of species across
a variety of habitats, are a rich source of information on disper-
sal patterns. Over 20 years ago, Willson (1993) presented an
important analysis of seed dispersal kernels, showing how dis-
persal distances vary according to plant life form (i.e. herb,
shrub, tree) and dispersal mode (i.e. ballistic, wind, vertebrate).
Many more kernels have been published since 1993 and statisti-
cal methods have moved on (Willson analysed kernels using
least-squares linear regression). Two recent papers have synthe-
sized empirical plant dispersal data, relating mean or maximum
dispersal distance to variables such as dispersal mode, plant
growth form, seed release height, seed mass or terminal veloc-
ity (Thomson et al. 2011; Tamme et al. 2014). These analyses
are useful; for example, Tamme et al. (2014) provided R code
to predict the maximum dispersal distance from simple plant
traits. However, they offer no information on the complete set
of dispersal distances (i.e. the shape of the kernel), which is
necessary for many models of spatial dynamics. For example,
modelled population spread rates are greatly influenced by the
form and extent of the tail of the dispersal kernel (Kot, Lewis &
van den Driessche 1996; Caswell, Lensink & Neubert 2003).
There is great potential for synthesizing published dispersal
data, to provide ecologists with general dispersal kernels for
different plant types and dispersal modes.
It is common to fit statistical functions to dispersal data,

providing so-called phenomenological dispersal kernels,
which are a useful summary of dispersal patterns for activities
such as modelling population spread or linking demography
to dispersal patterns (Bullock, Shea & Skarpaas 2006). A
variety of functions have been implemented; Nathan et al.
(2012) discuss 13 simple (i.e. one or two parameter) functions
that have been used in different studies. These functions have
also been used in different ways, with inconsistency in what
data are fitted and how the function is interpreted (Cousens,
Dytham & Law 2008; Nathan et al. 2012). A dispersal kernel
is a probability density function of dispersal distances, and
the formulation depends on whether it represents the distribu-
tion of distances dispersed (the dispersal distance kernel) or
the distribution of the final locations of dispersers (the disper-
sal location kernel) (Nathan et al. 2012).

The simplest functions used are the single-parameter Gaus-
sian and exponential. The Gaussian distribution represents
seeds moving by Brownian motion for a fixed period of time,
while the exponential results from seeds moving randomly
and having a certain probability of settling per unit of time.
Because of these properties, these two functions are especially
popular in mathematical developments of theory concerning
spatial dynamics (O’Dwyer & Green 2010; Gilbert et al.
2014; Harsch et al. 2014). Many individual studies suggest,
however, that the Gaussian and exponential do not represent
real dispersal kernels well (Clark 1998; Bullock & Clarke
2000), and other functions have been proposed to capture bet-
ter the high leptokurtosis and long (or even fat, i.e. not expo-
nentially bounded) tails seen in such data. These functions, in
general, do not have a mechanistic basis, but they can provide
a good description of the dispersal kernel. While some studies
have contrasted several functions in fitting to empirical data
(Clark et al. 2005; Martinez & Gonzalez-Taboada 2009), gen-
erally only one or very few functions are fitted, with little jus-
tification for the specific function(s) chosen. This suggests a
lack of cohesion in approaches to modelling dispersal, which
is likely to constrain progress.
The primary aim of this study was to combine and synthesize

published empirical seed dispersal data, using literature review
and statistical fitting of dispersal functions, to provide general
dispersal kernels representing major plant types and dispersal
modes. These provide empirically based information about dis-
persal distances and patterns for plant groups. In doing so, we
assess which of the simple functions used in the dispersal litera-
ture perform best in representing dispersal kernels across a
wide range of species, ecosystems and study types.

Materials and methods

EMPIRICAL DISPERSAL DATA

We examined the literature for data describing seed dispersal kernels.
Our initial source was our analysis (Tamme et al. 2014) of maximum
dispersal distances, which brought together previous studies that sum-
marized published dispersal information, and also did a search on ISI
Web of Science (WoS) using the keywords: ‘seed’, ‘dispersal’ and ‘dis-
tance’. We repeated this WoS search between 31 January 2012 (Tamme
et al.’s end date) and 1 November 2014. All papers were examined for
data describing seed distributions with distance from a source. Pub-
lished data were included in our analyses according to the following
criteria: (i) The data described dispersal from a discrete source in two-
dimensional space, such as a single plant, a small group of plants or a
single depot (e.g. in vertebrate dispersal studies). Linear sources or
large patches were excluded as the resulting dispersal kernels could not
reasonably be characterized as having a point source (different kernels
could be fitted (Shaw et al. 2006), but comparison across data sets
would be difficult); (ii) The data covered at least four distance loca-
tions, to provide a reasonable description of the kernel. In fact, of the
data sets included none had only four points, one had five, the rest
more; (iii) The data comprised specific distances (‘traps’) or distance
classes (‘bins’) and at each of these a measure of seed density (absolute
or relative), number of seeds, or the proportion of dispersed (i.e. all
seeds found) or all (i.e. those counted or placed at the discrete source)
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seeds. Lists of individual seed dispersal distances were included; (iv) If
the data described seedlings/plants at distances rather than seeds, they
were excluded as these are the outcomes of spatial variation in recruit-
ment and survival as well as dispersal; (v) Data generated by fitted ker-
nels (e.g. by inverse modelling) or mechanistic modelling were
excluded as these assume an underlying statistical function; and (vi)
Data projected by combining empirical information on vector move-
ment and seed retention/deposition (e.g. bird movement and gut reten-
tion times) were included. This last decision allowed us to include a
large number of data sets for vertebrate dispersal: three for climbers,
one for herbs, 11 for shrubs and 17 for trees. However, dispersal esti-
mated by this method was significantly further than when estimated by
other methods (e.g. following dispersers or genetic markers). The mean
dispersal distances (estimated using the fitted exponential power param-
eters) of trees were greater for data sets using seed retention methods
(median of the mean distances = 3106 m. n = 17) than for those using
other methods (median = 168 m. n = 17) (Kruskal–Wallis P = 0.02).
There were too few data sets to carry out this test on other growth
forms. Nevertheless, we retained these data sets and address this issue
in the Discussion.

Data were extracted from tables or, in the majority of cases, from
figures, in which case we used the DATATHIEF software (Tummers
2006). As the data were presented in a variety of forms, we needed
to represent all dispersal kernels in a common format for analysis and
comparison. The most robust approach was to convert all data into
paired seed densities (i.e. m�2) and distances, representing the so-
called dispersal location kernel (Nathan et al. 2012). This accommo-
dated spatial discontinuities (i.e. not all distances had associated data)
and the common binning of data into distance classes. This gave us
107 papers presenting 168 dispersal kernels. Some papers reported
multiple dispersal data sets, and these were either for different plant
species, for different vectors (in terms of the dispersal mode, e.g.
wind versus vertebrate; or the vector species) of the same species or
for the same species in different environments (e.g. forest vs. clear-
ing). Replicate kernels for a species in the same situation (i.e. vector
and environment the same) were analysed together, accounting for
replication. Occasionally, different papers contained versions of the
same data set; for these, we selected the most comprehensive data set.

Most data sets, 125, were given as ‘bin’ data such that numbers or
proportions of seeds were reported for contiguous distance classes. In
these cases, the distance was assumed to be at the mid-point of the
bin. Forty-one kernels were given as ‘trap’ data, with densities or
seed numbers reported for discrete and non-contiguous distances.
Only two data sets were given as individual seed distances.

We added supplementary data to each dispersal data set. (i) The
dispersal mode: ant, ballistic, rodent, vertebrates other than rodents
(separated as rodents were a large class and other vertebrates are
more mobile), vehicle (cars, etc.) and wind. In this paper, we use
the term dispersal mode (e.g. Willson 1993), which is synonymous
with the term dispersal syndrome as used by Tamme et al. (2014)
and Thomson et al. (2011). Wind-dispersed species were separated
into those with an appendage that facilitates wind dispersal such as
samaras or plumes, versus those with simple seeds/fruits. Modes
were taken from the original publications. Each data set had a speci-
fic, stated mode, although different data sets for the same species
sometimes represented different modes [reflecting that many species
are dispersed by multiple vectors (Bullock, Shea & Skarpaas 2006)].
In the case of dispersal by vertebrates, some data sets represented
dispersal by a single species (30), while others represented dispersal
by multiple species (42); (ii) The growth form: climber, graminoid,
herb, shrub or tree. Classifications were taken, and sometimes

simplified (e.g. grasses and sedges into graminoids) to avoid too
many classes, from the original publications; (iii) Seed mass (i.e. of
the seed, not necessarily the dispersule) from Tamme et al. (2014),
the original publication or online sources, especially the Seed Infor-
mation Database (Royal Botanic Gardens Kew 2015); (iv) Plant
height from Tamme et al. (2014), the original publication or online
sources; (v) The plant family, the country and continent, and the
vegetation type; taken from the original paper; and (vi) The maxi-
mum distance to which dispersal was measured. This represented a
wide range; of the maximum measurement distances, the median
was 45 m, the maximum 6500 m and the minimum 0.2 m. But all
these kernels showed clear distance patterns (i.e. none showed a
few similar densities close to the source, representing a very partial
description of the kernel).

FITT ING DISPERSAL FUNCTIONS

We fitted 11 functions to each of the 168 empirical kernels (Table 1).
These are 1- or 2-parameter functions commonly used in analysing
dispersal data as summarized by Nathan et al. (2012), from whose list
of functions we excluded only the general mixture function (describ-
ing a mixture of two unspecified functions) and the undefined version
of the power law. Mixtures of functions can indeed provide useful
descriptions of dispersal (e.g. Bullock & Clarke 2000), but they com-
prise more than two parameters which can lead to overfitting and a
lack of generality. We used the forms of the functions as dispersal
location kernels given by Nathan et al. (2012) and represent dispersal
in two dimensions. As the data were densities, we multiplied these
functions by a fitted parameter Q which is the number of seeds dis-
persed. In some cases, Q was reported in the publication, being the
number at the source. But in many cases, Q was not reported or
known with any accuracy (the number of seeds found is a poor esti-
mate of Q because it is likely that not all dispersed seeds were
detected by the sampling method), so Q was fitted in each case.

These functions were fitted to each data set using SAS Proc
NLMIXED, which fits nonlinear mixed models by maximum likeli-
hood. The shape parameter a, the scale parameter b, and Q were fixed
effects while replicates, if present, were added as a random effect to
the Q parameter (i.e. with common a and b values as we assumed
these to be unvarying) – see eqn S1 in Supporting Information. We
used Poisson errors following examination of the data and residuals.
Zero densities were retained, except that data sets that ended with a
series of zero densities (22 of the 168) at the furthest distances were
truncated to the first zero density to avoid zero-inflation of the data.
We assumed dispersal was isotropic in all cases, and indeed, all stud-
ies apart from one did not split data according to direction (Bullock
& Clarke 2000; we merged data among the directions in this case).
Fits of the functions were compared using AICc, a corrected AIC
which relaxes the large sample assumption. As with AIC, this penal-
izes functions which have more parameters. The best-fitting function
for each data set was that with lowest AICc, but following conven-
tion, we included in this best-fit group those with an DAICc (i.e. dif-
ference from the lowest AICc) ≤4. The AICc only determines the
best of the available functions, so goodness-of-fit was assessed by
calculating Nakagawa & Schielzeth’s (2013) general r2:

r2 ¼ 1�
Pn

i�1 ŷi � yið Þ2Pn
i�1 yi � �yð Þ2 ; eqn 1

where n is the number of observations, yi is the ith observed value, ŷi
is the ith predicted value, and �y is the mean value.
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GENERALIZ ING DISPERSAL KERNELS

AICc values showed that the exponential power (ExP) and log-sech
(LogS) were by far the most frequent functions in the best-fit group
across the 168 data sets. We concluded these would be the two most
appropriate functions for a general description of dispersal kernels
according to plant characteristics. Using two functions allowed us check
whether findings were independent of the exact function used. The ExP
and LogS functions did not describe all data sets well, so we applied an
arbitrary threshold of r2 ≥ 0.7 for inclusion of a case study in the fur-
ther analyses using the ExP (144 of the 168 data sets) or LogS (142: this
is not exactly the same group as that meeting this criterion for the ExP;
16 data sets were assigned uniquely to ExP or LogS).

We analysed whether the included studies for either function were
a biased set in terms of plant characteristics of the full set of studies,
and so whether our analyses using this set would give a biased under-
standing of dispersal kernels (Table S1). This was not the case for
growth form, dispersal mode, plant height or seed mass, with the
exception of a slight difference in plant heights for LogS, with
excluded plants being taller (Kruskal–Wallis; P = 0.043; means
13.04 m vs. 8.95 m). We also used Kruskal–Wallis to assess whether
the included studies represented a biased set of case studies in terms
of the methodology – that is the maximum distance over which dis-
persal was measured. This was not the case for ExP (P = 0.283) or
LogS (P = 0.515).

The mean distance of the ExP is a function of both parameters:

mean ExPð Þ ¼ a
C 3=bð Þ
C 2=bð Þ ; eqn 2

(Γ is the gamma function). The LogS has an unspecified mean for
b > 1 (which was found for 60 data sets). We used the ExP mean to
compare the data sets in terms of how plant characteristics affected
the ExP kernel. We calculated the ExP mean dispersal distance for
each of the 144 case studies with r2 ≥ 0.7 and tested for differences
in this mean according to four principal plant characteristics: growth
form, dispersal mode, plant height and seed mass. These were shown

by Tamme et al. (2014) to be good predictors of measured maximum
dispersal distance, and they represent straightforward classifications of
plants into types that might be used in assigning dispersal kernels for
modelling or other studies. We fitted linear models using SAS Proc
MIXED to the ExP means using all combinations of these four fac-
tors (seed mass and plant height were log10 transformed). Interaction
terms were not included as the data were unbalanced and collinear.
The model with lowest AIC comprised Growth form + Dispersal
Mode + Plant height (AIC = 405.8, r2 = 0.56), with one other within
4 AIC, that is Growth form + Dispersal Mode + Plant height + Seed
mass (AIC = 405.9) (see Table S2 for the full analysis). We also ran
the best-performing linear model combining classes which might be
expected to have similar dispersal kernels: graminoids and herbs
(AIC = 410.1), climbers and trees (405.8), rodents and other verte-
brates (426.4), and vehicles and vertebrates (406.7). None of these
reduced the AIC so we kept the full set of growth forms and dispersal
modes in further analyses.

We therefore fitted general ExP and LogS dispersal functions to
the r2 ≥ 0.7 case studies grouped according to growth form and dis-
persal mode. For both ExP and LogS 10 form/mode, primary combi-
nations had a reasonable number (>3) of case studies to fit general
functions (Table S3); we considered ≤3 cases to be too affected by
the particularities of the individual case studies. Preliminary analyses
showed an alternative approach using plant height or seed mass as
modifiers of the a and/or b parameters was not effective and led to
poor model convergence. To use the information provided by these
extra variables, where there were sufficient data sets we also fitted
functions to subdivisions of the primary form/mode groups, using the
variable most likely to be important for that group: seed mass for ani-
mal-dispersed groups and plant height for wind-dispersed groups
(Table 3). While seed mass rather than plant height would be
expected to affect animal dispersal, both might be important for wind
dispersal. Thomson et al. (2011) found that plant height is a much
more important predictor of dispersal distance than seed mass, so we
chose this as the grouping criterion for wind-dispersed seeds. The
number and bounds of the subdivisions were arbitrary, but based on

Table 1. The probability density functions [dispersal location kernels, taken from Nathan et al. (2012)] fitted to the 168 seed dispersal data sets,
along with summaries of the goodness-of-fit to these data sets. Distance (in m) is given by d. Fitted parameters are the scale parameter a and the
shape parameter b. Densities were seeds m�2. Γ is the gamma function

Name Probability density function

Number of the 168 data sets that have

Median r2
DAICc ≤ 4
(best-fit group) DAICc > 4 Not converged r2 ≥ 0.7

Log-sech (log-hyperbolic secant)
1= p2bd2ð Þ

d=að Þ1=bþ d=að Þ�1=b 119 49 0 142 0.971

Exponential power b
2pa2C 2=bð Þ exp � db

ab

� �
111 57 0 144 0.981

Power law b�2ð Þ b�1ð Þ
2pa2 1þ d

a

� ��b
101 65 2 135 0.973

Logistic b
2pa2C 2=bð ÞC 1� 2=bð Þð Þ 1þ db

ab

� ��1
100 68 0 133 0.951

2Dt b�1
pa2 1þ d2

a2

� �
98 70 0 136 0.972

Gamma b
2pa2C bð Þ

d
a

� �b�2exp � d
a

� �
98 70 0 135 0.974

Inverse Gaussian (WALD)
ffiffi
b

pffiffiffiffiffiffiffiffiffi
8p3d5

p exp � b d�að Þ2
2a2d

� �
88 77 0 123 0.953

Weibull 1
2pa2 d

b�2exp � db
ab

� �
77 80 11 101 0.829

Exponential 1
2pa2 exp � d

a

� �
68 89 11 120 0.876

Log-normal 1
2pð Þ3=2bd2 exp � ln d=að Þ2

2b2

� �
55 109 4 69 0.489

Gaussian 1
pa2 exp

d2
a2

� �
30 101 37 63 0.509
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the number of data sets and the distribution of values of these vari-
ables, using similar subdivisions across the groups for comparability
(Table 3). For both ExP and LogS, we fitted Q, a and b to the density
data, with each case and each replicate within a case was included as
random factor that affected Q. Thus, we searched for common a and
b values across all cases, in accordance with the hypothesis that all
studies within a specific growth form/dispersal mode (+ seed mass or
plant height class) combination followed the same underlying proba-
bility density function.

We calculated percentiles of the dispersal distances for each fit of
the ExP and LogS using the integrals of these functions formulated in
terms of dispersal distances (i.e. the dispersal distance kernel rather
than the location kernel given in Table 1 – see Nathan et al. (2012),
whereby the distance kernel = the location kernel/2pd). For long-
tailed kernels such as these, the median is a good measure of the
average dispersal distance and the 95th percentile summarizes the tail
(Tamme et al. 2014).

Results

FITT ING DISPERSAL FUNCTIONS TO 168 DATA SETS

The 168 data sets covered 63 families, all the continents
except Antarctica (30 countries), and the broad vegetation
types of forest (100 data sets), grassland (46), shrubland (6)
and more open habitats (16; e.g. desert, clearfell, urban). The
classification of data sets among dispersal modes and growth
forms was uneven (Table 2). While the distribution of disper-
sal modes in nature is not known in detail, Jordano (2000)
estimated ca. 40–90% of species in forests and 20–50% in
shrublands are vertebrate-dispersed, while frugivory is uncom-
mon in many other vegetation types. This suggests a bias
towards measurements of vertebrate dispersal (43% of data
sets), as well as towards forest ecosystems [which account for
only 31% of land cover world-wide (FAO 2010)].
Of the 11 functions, the exponential power, 2Dt, logistic,

gamma and log-sech converged for all data sets, but the other
functions did not always converge (Table 1). This poor con-
vergence was only substantial for the Gaussian (37 data sets),
which also showed poorest fit with DAICc ≤4 for only 30
data sets. The other one parameter function, the exponential,
had a much better performance, being in the best-fit group in
68 cases. The log-normal and the Weibull also performed
rather poorly. The other functions – exponential power, 2Dt,
power law, WALD, logistic, log-sech and gamma – all per-
formed better, but all fell outside the best-fit group in many
cases. Interestingly, the WALD, although based on a

mechanistic representation of dispersal by wind (Katul et al.
2005), was in the best-fit group of only 15 of the 55 wind
dispersal data sets and by this metric performed better than
only the exponential, Gaussian and log-normal. The r2 values
showed generally very good fit with high values (in terms of
the median value and number of data sets for which r2 ≥ 0.7;
Table 1) for most functions except the Gaussian and log-nor-
mal, and the patterns of r2 values followed those of the AICc
values. Figure 1 shows some example plots of data with the
fitted functions. Tables S4 and S5 present the fitted parameter
values for all well-fitting functions for each of the 168 data
sets and the supplementary data describing the species and
study system.
The exponential power (ExP; DAICc ≤4 for 111 cases) and

log-sech (LogS; 119) clearly outperformed the other functions
(but note these numbers are �168). The ExP can reduce to
an exponential (b = 1) or Gaussian (b = 2), and can fit a fat
tail (b < 1) or a thin tail (b > 1). Of the 144 data sets selected
as showing good general fit to the ExP (i.e. r2 ≥ 0.7), 117
had a b < 1, and 27 had b > 1, suggesting that a majority of
kernels are fat-tailed. The LogS is always fat-tailed (power-
law tail) and flattens (for b < 1) or decreases (b > 1) close to
0 distance. Of the 142 data sets with good general fit to the
LogS, 90 had b < 1 and 52 b > 1.
Although the case study composition of the best-fit group

differed among the functions, there was no bias in compar-
ison with the full set of case studies in terms of dispersal
mode (v2 = 45.9, d.f. = 40, P = 0.24), growth form
(v2 = 21.7, d.f. = 20, P = 0.36), plant height (Kruskal–Wallis
H = 9.6, d.f. = 10, P = 0.48) or seed mass (H = 12.5,
d.f. = 10, P = 0.25). We also asked whether the study design
affected the set of best-fit functions (e.g. was a function
allowing a fatter tail less likely to fit kernels measured over
shorter distances?), but the maximum distance over which dis-
persal was measured did not differ among the best-fit groups
(H = 15.4, d.f. = 10, P = 0.12).

GENERALIZED DISPERSAL KERNELS

The fitting of the ExP and LogS functions across grouped data
sets provided generalized dispersal kernels for a number of
well-studied plant growth form/dispersal mode combinations
(Table 3, Fig. 2). Across the 10 combinations, both the ExP
and LogS gave similar and generally good fits, with r2 ranging
from 0.39 to 0.97 (median 0.73, r2 < 0.7 for three combina-
tions) for the former and 0.32–0.97 (median 0.78, r2 < 0.7 for

Table 2. The distribution of the 168 dispersal data sets among growth forms and dispersal modes

Dispersal mode Ant Ballistic Rodent Vehicle Vertebrate (excl. rodent) Water Wind (appendage) Wind (no appendage) Total

Growth form
Climber 0 1 0 0 3 0 2 0 6
Graminoid 1 0 0 1 0 1 0 9 12
Herb 11 13 1 2 3 0 10 13 53
Shrub 6 2 0 0 15 0 1 4 28
Tree 0 3 12 0 38 0 16 0 69

Total 18 19 13 3 59 1 29 26 168

© 2016 The Authors. Journal of Ecology © 2016 British Ecological Society, Journal of Ecology, 105, 6–19
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3) for the latter; although the patterns of r2 values across the
form/mode combinations differed between ExP and LogS
(note that it is not appropriate to compare the fits of the ExP
and LogS using AIC as they were fitted to different sets of
case studies). Similar results were seen for the subdivisions
according to seed mass or plant height classes, with r2 < 0.7
for 12 of 38 groups across the ExP and LogS functions.

Median dispersal distances of the fitted functions were in the
order trees (ExP mean of the medians = 20.9 m) > shrubs
(3.05 m) > herbs and graminoids (0.38 m). Vertebrates (ex-
cluding rodents; ExP mean of the medians = 22.5 m) dispersed
seeds further than rodents (5.45 m), which dispersed seeds sim-
ilar distances to wind for dispersules with an appendage
(8.75 m), while dispersal by ants (0.87 m), ballistic (0.45 m)
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Fig. 1. Six examples of the 168 data sets with the 11 fitted dispersal functions (see Table 1), showing log10 seed density against distance. The
examples are chosen to reflect the less common growth form/dispersal mode groupings, which therefore were not among the ten groups (Table 3,
Fig. 2) for which general functions were fitted. Data sources: (a) Wada & Uemura (1994), (b) Tekiela & Barney (2013), (c) Swaine & Beer
(1977), (d) Kjellsson (1985), (e) Bullock & Clarke (2000), (f) Arnold (1981). Where plotted, the y-axis is not continuous between 0 and the next
tick.
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and wind for dispersules with no appendage (0.20 m) resulted
in the shortest median distances. The same patterns were found
for the 95th percentile and for the LogS function (Table 3).

While these means are somewhat confounded as growth form
and dispersal mode were not found in all possible combina-
tions, more specific comparisons show the same patterns.
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Fig. 2. Generalized dispersal kernels for all 10 growth form/dispersal mode combinations for which there were sufficient data sets. Where possi-
ble, the data sets were also split into tall versus short plants (wind-dispersed) or light versus heavy seeds (animal-dispersed). The plots show the
data and the fitted exponential power functions (plots for the log-sech function are shown in the SI). In contrast to Fig. 1, the data are the proba-
bility densities, calculated by dividing the measured seed density by the individual Q (total seed number) value estimated for each data set while
fitting the function. Both axes are logged to gain best visibility of the data, which cover a large range in both dimensions. The y-axis is not con-
tinuous between 0 and the next tickmark. Further information is in Table 3.
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For trees, dispersal distances are of the order vertebrate > wind
(with appendage) > rodent. For shrubs, vertebrate > ant. How-
ever, for herbs, wind-dispersal of dispersules with appendages
did not result in longer dispersal distances than by wind without
appendages, ant or ballistic.
Taller herbs, graminoids or trees had greater median and

95th percentile distances than shorter plants within the same
growth form/dispersal mode combination, and these differ-
ences were substantial (Table 3; Fig. 2c,e,j; Fig. S1c,e,j) and
consistent between the ExP and LogS fits. Seed mass did not
show a consistent pattern of effects on animal-dispersed ker-
nels. For the ExP fits, lighter seeds were dispersed further for
ant-dispersed herbs (Fig. 2a), vertebrate-dispersed shrubs
(Fig. 2g) and rodent-dispersed trees (Fig. 2h), but the pattern
was reversed for vertebrate-dispersed trees (Fig. 2i) and there
was little difference between seed mass classes for ant-dis-
persed shrubs (Fig. 2f). Furthermore, the patterns changed to
some degree when using the LogS function in that this indi-
cated heavier seeds dispersed further in ant-dispersed herbs
(Fig. S1a) and ant-dispersed shrubs (Fig. S1f) and no pattern
for rodent-dispersed trees (Fig. S1h). This indicates a strong

pattern for plant height effects on wind dispersal, but an
inconsistent pattern for seed mass effects on animal dispersal.
The two functions ExP and LogS described similar disper-

sal kernels for each combination of data sets, as described
above. However, these functions have different intrinsic
shapes (Nathan et al. 2012) and were fitted to slightly differ-
ent data sets. The modelled median and 95th percentile dis-
persal distances therefore differed between the ExP and LogS
fitted to each combination of data sets (Table 1). This differ-
ence for the median (in terms of the absolute % difference of
the LogS value from the ExP value) ranged from 3% to
476%, with a median of 48%. However, one function did not
give a consistently higher or lower median value than the
other.

Discussion

In this paper, we present standardized dispersal kernels for
168 case studies representing a range of plant types across a
wide geographic range, as well as generalized kernels for
well-studied plant growth form/dispersal mode combinations.
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Fig. 2. continued
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While it would be preferable to determine dispersal kernels
directly in the system(s) one is studying, dispersal is notori-
ously difficult and resource-consuming to measure (Bullock,
Shea & Skarpaas 2006). It is indicative of this difficulty that
in contrast to our collation of 168 dispersal data sets for 144
species, the COMPADRE data base of plant demographic
matrices currently includes 637 species and 6242 matrices
(http://www.compadre-db.org/Data/Compadre; accessed 02/06/
16) and has many more to be added. Potential uses of our
synthesis of empirical dispersal data include the following: (i)
choosing appropriate dispersal functions in generic modelling
studies; (ii) selecting informative dispersal kernels for one’s
empirical study system; and (iii) using representative dispersal
kernels in cross-taxon comparative studies. Below we expand
on each of these uses and discuss points that arise, including
those relating to data quality.

CHOOSING APPROPRIATE DISPERSAL FUNCTIONS

Many functions are used to describe empirical dispersal ker-
nels, and the choice for a particular study often seems to arise
from personal preference or experience. The Gaussian and
exponential have statistically mechanistic basis, in that they
describe a movement process (Petrovskii & Morozov 2009).
Some other functions have a similar philosophy. For example,
the 2Dt is a continuous mixture of Gaussian kernels with
variance parameters distributed as the inverse of a gamma dis-
tribution (Clark et al. 1999). However, the functions used are
often chosen as 2-parameter equations allowing high leptokur-
tosis and long (sometimes fat) tails, with little consideration
of the underlying mechanism. This suggests that no one func-
tion will be the best as they are generally simple (to allow fit-
ting) statistical descriptions of a complex process. However,
few studies compare the fit of multiple functions to dispersal
data. Martinez & Gonzalez-Taboada (2009) fitted exponential,
2Dt, log-normal and Weibull functions (as well as a Weibull–
exponential mixture) to a number of vertebrate and wind-dis-
persed trees and shrubs in a forest system and found different
functions performed better for different species, with no rela-
tion between dispersal mode and best-fit function. Clark et al.
(2005) fitted exponential, Gaussian, inverse power (i.e. a
power law function) and 2Dt functions to dispersal data for
different trees in a forest plot. They found Gaussian and 2Dt
functions best fitted wind-dispersed seeds, while the inverse
power best fitted the bird- and monkey-dispersed seeds.
Greene et al. (2004), again considering trees from a variety
of studies, found the log-normal performed better than the
2Dt or Weibull.
For this study, we opted for an objective selection of dis-

persal functions, using 11 listed in a review by Nathan et al.
(2012). This approach gave insights into the performance of
different functions when fitted to a wide range of dispersal
kernels. The log-sech (LogS) and exponential power (ExP)
showed the best fits to the data sets. It is difficult to pinpoint
why these two functions perform best, but this finding sug-
gests these might be useful general functions to use in mod-
els. However, these functions have quite different properties

and histories of use in dispersal studies. The LogS has been
used very rarely, just in one study of dispersal of birds (Van
Houtan et al. 2010). The LogS becomes the Cauchy for
b = 1 (Nathan et al. 2012), which is occasionally used in
seed dispersal studies (Seri, Maruvka & Shnerb 2012; Munoz
et al. 2013). The LogS also has unattractive properties, such
as no mean value for b ≥ 1, nor does it have moments. The
ExP has been widely used on a variety of taxa (Nathan et al.
2012) and on many seed dispersal data since Clark et al.
(1998). It has useful properties such as a mean value (eqn 2),
has moments and it reduces to the exponential or Gaussian
for certain values of b. An interesting finding was that of the
144 data sets showing a good fit of the ExP (i.e. r2 > 0.7),
117 had b < 1, which indicates a fat tail. Similarly, nine of
the 10 ExP functions estimated for the major growth form/
dispersal mode groupings had b < 1, as did 17 of the 19 plant
height/seed mass subdivisions of these groupings. As an illus-
tration of the influence of the b parameter, 57 of the 168 data
sets had both the ExP and the exponential in the best-fit
group and had b < 1 for the ExP (10 had b > 1). The median
value of the ExP b in these 57 data sets was 0.445 and the
95th percentile (as a measure of the tail) of the fitted function
was a median of 234% more than that of the fitted exponen-
tial. Fat-tailed kernels are a popular concept in dispersal ecol-
ogy (Klein, Lavigne & Gouyon 2006; Nathan et al. 2008),
but this property of the ExP allows an explicit test whether
empirical kernels are indeed fat-tailed. Because of these prop-
erties, the ExP might be more generally useful than the LogS.
Our suggestion that no one function would be expected to

fit all data sets well is supported by the fact that no function
was always in the best-fit group for each data set. However,
there was a strong differentiation among the functions in how
well they were represented in the best-fit groups. Certain func-
tions are very popular in the wider dispersal literature, such as
the log-normal (Greene et al. 2004), which performed very
badly here; or the 2Dt (Jones & Muller-Landau 2008) which
performed fairly well. It is particularly interesting that the
WALD performed poorly for wind-dispersed data sets. The
WALD is an analytical formulation of a wind-dispersal model
(Katul et al. 2005) and has been used widely as a mechanistic
model to generate dispersal kernels (Skarpaas & Shea 2007;
Bullock et al. 2012). While its poor performance when used
in this paper as a fitted function does not negate such uses, it
does suggest that more validation is needed. The WALD has a
density mode at a distance >0 and the fact that many of the 55
wind-dispersed data sets showed monotonically declining den-
sity with distance may explain its poor performance. It would
be useful to revisit the WALD theory to analyse why it fails,
such as the simplifying assumptions used upon the Langevin
and the Fokker-Planck equations (Katul et al. 2005).
Our analysis suggests the Gaussian is a very poor represen-

tation of the dispersal process. This point has long been raised
in the dispersal literature (Wallace 1966), but our analysis
provides an objective affirmation. While its mathematical
properties make the Gaussian popular in mathematical repre-
sentations of dispersal, the low kurtosis and thin tail can lead
to inaccurate predictions about dispersal distances and spatial
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dynamics (Clark et al. 1998; Klein, Lavigne & Gouyon
2006). The second one-parameter function, the exponential,
has had a similarly negative press to the Gaussian (Bullock &
Clarke 2000; Nathan et al. 2012), but it performed much bet-
ter than the Gaussian. While it did not perform as well as
almost all the 2-parameter functions (but better than the log-
normal – Table 1), our analyses suggest the exponential has
some credence as a simple function to use both as a compara-
tor for more complex functions when fitting data, and as a
straightforward function in mathematical modelling studies. It
might be argued that the good fit in many cases may reflect
data quality or inadequate sampling at long distances, in that
the tail of the kernel may not be well described. This point is
countered by our analysis showing that the distance over
which dispersal was measured in a study did not differ among
the best-fit groups for the set of functions. This does raise the
issue that while the tail of the dispersal kernel is often dis-
cussed in the literature and has a clear meaning in mathemati-
cal formulations of the kernel (Klein, Lavigne & Gouyon
2006), it is not clear what exactly the tail is in empirical mea-
sures of dispersal, or what a sufficient measurement of this
tail looks like. Portnoy & Willson (1993) defined the tail as
‘the set of distance categories beyond the last clear mode of
the data’. By this definition, visual examination of each data
set suggested each represented a kernel tail to some degree
(e.g. Fig. 1).

SELECTING INFORMATIVE DISPERSAL KERNELS

As dispersal is intrinsic to plant life histories, governing local
and regional population dynamics, genetic structuring, evolu-
tionary processes and community dynamics to name a few,
knowledge of dispersal kernels should be a key aim in many
studies. The relative scarcity of such information is therefore
limiting in ecology. The individual case studies and the gen-
eric dispersal kernels presented in this paper are therefore a
resource to help address this limitation. A researcher might
choose one or more case studies that match to some extent
the characteristics of their study system and/or a generalized
dispersal kernel which does the same. While we provide gen-
eralized kernels for 10 growth form/dispersal mode combina-
tions, there are a small number of case studies representing
13 other combinations. The potential uses of such kernels are
multiple. If one has the luxury of choice among multiple case
studies, selection could follow alternative criteria, such as
fine-scale measures of short-distance dispersal when studying
competition or the Janzen–Connell effect versus less detail,
but measures over long distances, to assess ability to spread
or persist in fragmented landscapes.
Furthermore, the ExP and LogS functions gave somewhat

different generalized kernels, as illustrated by variation in the
predicted medians and 95th percentiles. This partially reflects
the intrinsic differences in the functions – the LogS has a
power-law tail and a weak effect of distance close to the
source, whereas the ExP represents a smoother decline with
distance (Nathan et al. 2012). But the differences also reflect
uncertainty in our analyses due to variation among the data

sets within each group in terms of the ecology of each system
and the data-gathering approach. Our parameterization of both
functions will allow researchers to use them in combination
and represent this uncertainty in the kernel.
Each individual case study, and thus each generalized ker-

nel, relates to a single dispersal mode. Multiple dispersal
agents may be involved in the dispersal of seeds from a plant
or of an individual seed. Thus, the ‘total dispersal kernel’
(Nathan et al. 2008) of a plant or population may require
combining kernels for multiple dispersal modes. To do so,
one should convolve (Neubert & Parker 2004) the relevant
dispersal distance probability density functions (pdf) – that is
the dispersal location pdf/2pd. Surprisingly, only three of the
107 studies considered dispersal by multiple modes: ballistic
dispersal followed by ant dispersal (Beaumont, Mackay &
Whalen 2009); and dispersal by vehicles versus that by wind
(Arnold 1981; Bullock et al. 2003). The same approach could
be used if, say, different animal species disperse the seed and
one has individual kernels for each animal vector (Lehouck
et al. 2009).

USING REPRESENTATIVE DISPERSAL KERNELS

Empirical dispersal kernels are useful for multispecies studies.
These might involve modelling how fast species may spread,
or potential distributions, under a changing climate. Current
approaches use a small number of empirical data sets (Bul-
lock 2012) or simple, predetermined dispersal functions, such
as the exponential (Engler & Guisan 2009; Bocedi et al.
2014). A broader range of empirically determined kernels,
applicable to a wide range of species, should allow more real-
istic and representative forecasts. Another use would be to
represent dispersal in comparative studies. While plant demo-
graphic data have been used in comparative life-history analy-
ses (Salguero-Gomez et al. 2016), dispersal information has
not been included. Other comparative analyses use traits
related to dispersal ability, such as plant height, seed mass
and dispersal mode (Baeten et al. 2015). The use of informa-
tion on the kernel itself should help better integrate a more
rounded understanding of dispersal into such studies.
This potential raises the issue of the how dispersal kernels

vary according to plant and vector characteristics. It should
be noted that analysis of the differences among classifications
is not the main focus of this paper, and the classifications are
used more to give ecologists well-defined groups from which
to draw dispersal kernels relevant to their needs. We fitted
generalized ExP and LogS functions for growth form and dis-
persal syndrome combinations and were able to subdivide
these further according to plant height (wind dispersal) or
seed mass (animal dispersal) classes. These functions were fit-
ted to groupings of data sets each of which encompassed a
wide range of systems, a diversity of data-gathering methods
and variety in the plants and dispersal vectors studied. For
example, of the 30 papers (59 data sets) assessing non-rodent
vertebrate dispersal, the majority studied dispersal by small-
to medium-sized birds (15 papers, some papers studied more
than one group), such as thrushes, tanagers or mockingbirds.
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Larger birds such as toucans or cassowaries were covered in
six papers, primates such as tamarins or spider monkeys in
four and medium-sized omnivorous mammals such as pos-
sums and martens in three. Bears, deer, fruit bats, iguanas and
a large freshwater fish were studied in one paper each, and
two papers studied a broad, unspecified group of vertebrate
dispersers. Thus, there is inherent variation among the data
sets within each group. Despite this, the functions fitted to
each group had generally high r2 values, being >0.7 in the
great majority of cases and being significant at P < 0.05 in
all. Thus, we have confidence in the value of these general-
ized functions for wider use. The collecting of further disper-
sal data sets would allow further subdivision of data sets
according to key variables such as vertebrate type, local wind
speed, size of wind-dispersal appendage or vegetation type.
Because the data sets varied in terms of distance classes,

maximum distance, seed densities and sampling methods, fit-
ting functions across all the data with a and b varying accord-
ing to group would not have been sensible or feasible.
However, comparisons of the fitted curves and the dispersal
quantiles allowed tentative conclusions about differences
among these groups. Our data suggested average dispersal
distances vary among growth forms in the order
trees > shrubs > herbs, graminoids, and among dispersal
modes in the order vertebrates (excluding rodents) > rodents,
wind (with appendage) > wind (without appendage), ant, bal-
listic. Taller plants within groups disperse seeds further by
wind, but seed mass has an inconsistent relationship with dis-
persal distance (see also Thomson et al. 2011). Variation in
whether or not lighter seeded species disperse further than
heavier seeded species may arise if larger seeds are dispersed
by larger, more mobile animals (Nathan et al. 2008) and also
where a varying number of seeds are dispersed together in a
fruit (Jordano 2000).
Our findings build on the analysis by Willson (1993), who

carried out loglinear regression analysis of collated dispersal
kernels (i.e. fitting an exponential function). Interestingly, she
concluded wind-dispersed herbs with seed appendages dis-
persed further than herbs using ballistic or ant dispersal, and
wind-dispersed trees and shrubs dispersed further than those
dispersed by vertebrates. These findings contradict ours and
probably reflect the current availability of more data (60
papers compared to our 107) as well as the more sophisti-
cated analytical methods that are now available. However,
this does demonstrate the need to continue gathering dispersal
data directly as it is likely conclusions will develop as more
case studies become available.

MEASURING SEED DISPERSAL

Any statistical synthesis of multiple data sets is bound by the
number and quality of the studies used. The 168 data sets
represent a great effort by the researchers involved, and we
hope this synthesis does them justice by using these studies
to provide general information for the wider use of dispersal
kernels in ecological research. However, the findings of this
paper, especially the generalized dispersal kernels, are likely

to be much improved upon if further dispersal data are gath-
ered. The fitted kernels provided here can also be used to
inform direct seed dispersal studies. Skarpaas, Shea & Bul-
lock (2005) detailed a Monte Carlo approach to designing
seed dispersal studies efficiently using information on the
likely dispersal kernel, which could be provided by case stud-
ies and generalized kernels given in this paper.
While the relatively small number of studies is generally

limiting, we can identify three particular areas of research that
require focussed activity. One is to use methods that allow
better characterization of the tail, such as molecular markers
or tracking animal dispersers (Bullock, Shea & Skarpaas
2006). The variety of methods used to gather data is likely to
lead to uncertainty. While we could not analyse this formally
due to the fact that methods used are strongly linked to the
characteristics of the system studied, analysis of biases due to
methods would be useful. We did find that estimates of tree
seed dispersal by vertebrates were affected by the methods
used. A number of studies combined measures of seed reten-
tion, such as gut passage time, with data on movement by the
animal vector. Dispersal distances estimated by this method
were in general further than dispersal measured by other
methods, such as following vertebrate vectors, seed trapping
or using molecular markers. It is unclear however, whether
this represents a bias in the data as methods are usually cho-
sen to match the researcher’s understanding of the system,
such as knowledge that seeds are being carried a long way by
vertebrate dispersers (see Cortes & Uriarte 2013). While
biases according to method are possible, they do not under-
mine the aim of this paper, which is to synthesize existing
information of empirical dispersal kernels.
The second research area concerns our finding that dispersal

of trees and by vertebrates are favourite study systems. Studies
on other dispersal modes and growth forms would provide
much needed data for relatively understudied dispersal sys-
tems; two in particular are dispersal of seeds by humans or by
water. Finally, little is known about how dispersal varies
among habitats. In Fig. S2, we examine the seven species in
our analysis for which kernels were measured in different
habitat types (usually in different studies, but through the same
dispersal mode). The study methods and habitat contrasts were
too inconsistent to allow patterns to be discerned. It is likely
that habitat type and structure will affect the dispersal process
(Westcott et al. 2005; Trakhtenbrot, Katul & Nathan 2014)
and so more formal contrasts of kernels among habitat types
would allow characterization of intraspecific variation in dis-
persal. Furthermore, synthesis of such data would be aided by
more complete presentation of the gathered data in papers.
Many papers we used presented data in graphs or other sum-
mary forms (e.g. summing across replicates). Analyses would
have more power if data are published in their raw form, and
we would encourage researchers to do so.
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Additional Supporting Information may be found in the online
version of this article:

Table S1. Tests of whether the 142 datasets selected for fitting gener-
alised log-sech or the 144 selected for the exponential power were
biased sub-sets of the complete set of 168 datasets in terms of plant
characteristics.

Table S2. AIC values for linear mixed model analysis of how means
of the exponential power fitted to each of the 144 case studies for
which r2 ≥ 0.7 are affected by all combinations of the variables
growth form, dispersal mode, plant height and seed mass.

Table S3 The number of the 144/142 selected datasets for ExP/LogS
falling within in each combination of growth form and dispersal
mode.

Figure S1. Generalised dispersal kernels for all 10 growth form/dis-
persal mode combinations for which there were sufficient multi-spe-
cies datasets.

Figure S2. The seven species/dispersal mode combinations for which
there were multiple datasets.

Table S4. Details of the 168 datasets along with supplementary infor-
mation and the source of the dispersal data.

Table S5. Parameter values for the best-fitting functions describing
the dispersal location kernels for each dataset, following the number-
ing in Table S3.
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